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Abstract

A graph-based system to simulate the movements and in-
teractions of multiple random walkers (MRW) is proposed
in this work. In the MRW system, multiple agents traverse
a single graph simultaneously. To achieve desired interac-
tions among those agents, a restart rule can be designed,
which determines the restart distribution of each agent ac-
cording to the probability distributions of all agents. In par-
ticular, we develop the repulsive rule for data clustering. We
illustrate that the MRW clustering can segment real images
reliably. Furthermore, we propose a novel image cosegmen-
tation algorithm based on the MRW clustering. Speci�cally,
the proposed algorithm consists of two steps: inter-image
concurrence computation and intra-image MRW clustering.
Experimental results demonstrate that the proposed algo-
rithm provides promising cosegmentation performance.

1. Introduction

A random walk, a process in which a walker moves ran-
domly from one node to another in a graph, can be used to
analyze the underlying data structure of the graph. Many
properties of a random walk are quanti�able algebraically
based on graph theory [6], and can be solved by optimiza-
tion tools ef�ciently. Therefore, random walks have been
used in various graph-based learning tasks, including data
mining [4, 35] and interactive image segmentation [11, 15].
A study in [18, 19] showed that spectral clustering [26] is
also related to the random walk theory.

Whereas the conventional random walk theory describes
the movements of a single walker (or agent), we propose
a system of multiple random walkers (MRW) to simulate
multiple agents on a graph simultaneously. Those agents
traverse the graph according to a transition matrix, but they
also interact with one another to achieve a desired goal. Our
MRW system can support a variety of interactions by em-
ploying different restart rules. In particular, we develop the
repulsive restart rule for data clustering. With this restart
rule, as the random process continues, multiple agents repel

one another and form their own dominant regions. Eventu-
ally, the power balance among the agents is achieved, and
their distributions converge. By comparing the stationary
distributions, clustering can be achieved. We demonstrate
that this MRW process can cluster point data and segment
real images reliably.

Moreover, we apply the proposed MRW system to the
problem of segmenting similar images jointly. Recently, at-
tempts to extract common foreground objects from a set of
similar images have been made. This approach, calledco-
segmentation, was �rst addressed by Rotheret al. [23] and
has been researched actively [20, 12, 14, 3, 5, 30, 7, 24, 31].
Compared with segmenting each image independently, it is
advantageous to delineate similar objects from multiple im-
ages. However, since repeating image features do not al-
ways imply the most important and informative parts of a
scene, cosegmentation is still a challenging vision problem.

For cosegmentation, we introduce the notion of concur-
rence distribution, which represents the similarity of each
node in an image to foreground objects in the other images.
Then, the MRW clustering is performed by incorporating
the concurrence distribution into the repulsive restart rule.
Experimental results show that the proposed MRW algo-
rithm improves the segmentation accuracy signi�cantly, as
compared with recent state-of-the-art cosegmentation tech-
niques [14, 30, 24, 31], on the iCoseg dataset [3].

The rest of this paper is organized as follows: Section 2
reviews related work. Section 3 proposes the MRW system
for clustering. Section 4 discusses the characteristics of the
MRW clustering with image examples. Sections 5 develops
the MRW cosegmentation algorithm, and Section 6 presents
experimental results. Section 7 concludes this work.

2. Related Work

Data Clustering: The task of partitioning data into disjoint
subsets based on the underlying data structure is a primi-
tive activity to perceive information. The volume of data
that people produce and process has grown rapidly, and dis-
covering meaningful information from big data has become
an essential subject. Since robust clustering is dif�cult to



achieve because of noise and outliers in real-world data, var-
ious approaches have been attempted [32, 25].

Many phenomena in social and biological systems, as
well as engineering problems, can be modelled with graphs,
where nodes represent system elements and edges connect
the elements to represent their relationships. Graph-based
clustering hence has drawn much attention, and numerous
algorithms have been proposed [26, 21, 34, 16, 29].

Image Cosegmentation:Rotheret al. [23] �rst formulated
the cosegmentation problem by incorporating the inter-
image consistency into a Markov random �eld (MRF) en-
ergy function. Instead of thel1-norm, Mukherjeeet al. [20]
used thel2-norm to measure the similarity between fore-
ground histograms. Hochbaum and Singh [12] developed a
reward model satisfying the submodular condition and thus
solved it ef�ciently using the graph cuts. These early tech-
niques have been proposed to extract almost identical ob-
jects from different backgrounds.

Joulinet al. [14] considered the cosegmentation of fore-
ground objects with more appearance variations, by for-
mulating the cosegmentation as a discriminative clustering
problem. Batraet al. [3] developed an interactive coseg-
mentation algorithm, which intelligently suggests to the
user where to scribble next. They also made a cosegmen-
tation dataset with manually-annotated groundtruth, called
iCoseg, publicly available.

Collinset al. [7] used the random walk algorithm in [11]
as a core segmentation tool, and achieved the cosegmenta-
tion by enforcing the constraint that foreground histograms
should match one another. The proposed algorithm is also
based on a random walker process. However, while [11]
considers whether a single walker reaches a foreground or
background seed �rst, the proposed algorithm employs mul-
tiple random walkers, who interact one another, and derives
segmentation results from their stationary distributions.

Recently, several cosegmentation algorithms have been
proposed to achieve robust correspondence between fore-
ground objects. Changet al. [5] used saliency models to
exclude regions that infrequently appear across images. Vi-
centeet al. [30] generated object proposals from each im-
age, and used a random forest classi�er to score a pair of
proposals from different images. Rubioet al. [24] devel-
oped a region matching method to establish the correspon-
dences between common objects among images. Wanget
al. [31] used a functional map to represent consistent ap-
pearance relations between a pair of images, and jointly op-
timized the segmentation maps of all images.

3. Multiple Random Walkers

This section introduces the notion of MRW. We �rst de-
scribe the conventional random walk, which is a Markov
process of a single random walker (or agent). We then pro-

pose the MRW system to simulate movements and interac-
tions of multiple agents on a graph.

3.1. Single Random Walker

Let G = ( V; E) be an undirected, weighted graph. The
node setV consists of data pointsx i , i = 1 ; : : : ; N . Edge
eij in the edge setE connectsx i andx j . Also, let W 2
RN � N be a symmetric matrix, in which the(i; j )th element
wij is the weight ofeij , representing the af�nity between
x i andx j . Typically,wij is de�ned as

wij =

(
exp

�
� d2 (x i ;x j )

� 2

�
if eij 2 E;

0 otherwise,
(1)

whered is a dissimilarity function and� 2 is a scale param-
eter.

A random walker travels on the graphG. The transition
probabilityaij that the walker moves from nodej to node
i is obtained by dividingwij by the degree of nodej , i.e.,
aij = wij =

P
k wkj . In other words, the transition matrix

A = [ aij ] is computed by normalizing each column of the
af�nity matrix W . Let p ( t ) = [ p( t )

1 ; � � � ; p( t )
N ]T be a col-

umn vector, in whichp( t )
i denotes the probability that the

walker is found at nodei at time instancet. We then have
the temporal recursion

p ( t +1) = Ap ( t ) : (2)

If the graph has a �nite number of nodes and is fully con-
nected,A is irreducible and primitive [13]. Then, the
walker has a unique stationary distribution� , satisfying
� = A � , and� = lim t !1 p ( t ) regardless of an initial
conditionp (0) . The stationary distribution� conveys use-
ful information about the underlying data structure of the
graph, and it is thus exploited in vision applications [11, 10].

RWR [22] is a generalization of the random walk, in
which the walker is compelled to return to speci�ed nodes
with a restart probability� . The RWR recursion is

p ( t +1) = (1 � � )Ap ( t ) + � r ; (3)

wherer = [ r 1; r 2; � � � ; rN ]T is the restart distribution withP
i r i = 1 andr i � 0. With probability1 � � , the walker

moves ordinarily as in (2). On the other hand, with proba-
bility � , the walker is forced to restart with the distribution
r . Whenr i = 1 andr j = 0 for all j 6= i , the stationary
distribution of the RWR represents the af�nity of each node
to the speci�c nodei . This property has been exploited in
image segmentation [15] and data mining [22].

We note that RWR can be interpreted as the ordinary ran-
dom walk as well. The RWR recursion in (3) can be rewrit-
ten as

p ( t +1) = (1 � � )Ap ( t ) + � Bp ( t ) = ~Ap ( t ) ; (4)



whereB is a square matrix, all columns of which are equal
to r , and ~A = (1 � � )A + � B is the equivalent transition
matrix. There existsi such thatr i > 0. Thus,bii > 0 and
~aii > 0. It is known in matrix analysis [13] that an irre-
ducible matrix with at least one positive diagonal elements
is primitive. Therefore, the RWR recursion yields a unique
stationary distribution regardless of an initial condition, as
long as the graph is connected (it does not need to be fully
connected).

3.2. MRW

The conventional random walk in (2) or (3) describes
the movements of a single agent. In contrast, we consider
multiple agents who share the same graph and affect the
movements of one another.

Suppose there areK agents on a graph. Letp ( t )
k denote

the probability distribution of agentk at timet. Similar to
(3), random movements of agentk are governed by

p ( t +1)
k = (1 � � )Ap ( t )

k + � r ( t )
k ; k = 1 ; : : : ; K: (5)

Thus, with probability1 � � , agentk travels on the graph
according to the transition matrixA , independently of the
other agents. However, with probability� , agentk visits
the nodes according to the time-varying restart distribution
r ( t )

k = [ r ( t )
k; 1; � � � ; r ( t )

k;N ]T .
We can make the agents interact with one another, by

determining the restart distribution as

r ( t )
k = (1 � � t )r ( t � 1)

k + � t � k (P ( t ) ) (6)

where the function� k is referred to as the restart rule.
It determines a probability distribution� k from P ( t ) =
f p ( t )

k gK
k=1 , which is the set of the probability distributions

of all agents at timet.
In (6), � is a constant within[0; 1], called the cooling

factor. In an extreme case of� = 0 , the restart distribu-
tion r ( t )

k becomes time-invariant, and the MRW recursion
of each agent in (5) is identical with the RWR recursion in
(3). In the other extreme case of� = 1 , r ( t )

k = � k (P ( t ) )

does not directly depend on the previous distributionr ( t � 1)
k .

Suppose that0 < � < 1. We have

kr ( t )
k � r ( t � 1)

k k1 = � t k� k (P ( t ) ) � r ( t � 1)
k k1 � � t : (7)

Thus, ifs � t � T , kr (s)
k � r ( t )

k k1 � � T =(1 � � ). So each

element in the restart distributionr ( t )
k is a Cauchy sequence

in terms of timet. Since a Cauchy sequence inR is conver-
gent, the restart distributionr ( t )

k converges to a �xed distri-

butionr (1 )
k . Therefore, ast approaches in�nity, the MRW

recursion in (5) becomes the RWR recursion, and agentk
has a stationary distribution eventually. To summarize we
have the following convergence theorem.

Theorem 1 If the graph is connected and0 � � < 1, each
agent in the MRW system in(5) and (6) has a stationary
distribution, given by

� k = lim
t !1

p ( t )
k : (8)

The term `multiple random walks' was used in [2, 8],
but their graph simulations are different from the proposed
MRW system. They assume that multiple particles are in-
dependent of one another, or annihilate one another, or co-
alesce into one at a meeting node. Then, the expected time
for covering all nodes, or annihilating all particles, or co-
alescing into a single particle is computed. On the con-
trary, in our system, multiple walkers adapt their move-
ments based on other walkers' distributions. Then, we ex-
tract useful information from the stationary distributions of
the multiple walkers.

3.3. Repulsive Restart Rule for Clustering

By designing the restart rule� k in (6), we can simulate
a variety of agent interactions to achieve a desired goal. As
a particular example, we propose the repulsive restart rule
for clustering data. For notational simplicity, let us omit the
superscripts for time instances.

In the MRW system,

pk = [ p(x1j! k ); � � � ; p(xN j! k )]T (9)

wherep(x i j! k ) is the probability that agentk is found at
nodei . According to the Bayes' rule, the posterior proba-
bility is given by

p(! k jx i ) =
p(x i j! k )p(! k )

P
l p(x i j! l )p(! l )

; (10)

which represents the probability that nodei is occupied by
agentk. The repulsive restart rule sets thei th element of
� k (P) as

� k;i = � � p(! k jx i ) � p(x i j! k ) (11)

where� is a normalizing factor to make� k (P) a probabil-
ity distribution. Suppose that agentk is dominant at nodei ,
i.e., it has a high posterior probabilityp(! k jx i ) and a high
likelihood p(x i j! k ). Then, it restarts at that node with a
high probability, and tends to become more dominant. This
has the effect that a dominant agent at a node repels the
other agents. The repulsive restart rule in (11) can be rewrit-
ten as

� k (P) = � Qk pk (12)

whereQk is a diagonal matrix whose(i; i )th element is the
posterior probabilityp(! k jx i ).

For clustering, we perform the MRW simulation in (5)
and (6), by employing the restart rule in (12), to obtain the



(a) t = 0 (b) t = 1 (c) t = 5 (d) t = 15 (e) t = 30 (f) t = 70 (g) t = 100 (h) t = 200

Figure 1. Double random walkers with the repulsive restart rule. Red and blue walkers move interactively to divide a point set into two
clusters. The top two rows depict the probability distributions of the red and blue walkers, and the bottom row shows the clustering results.
The clustering decides that a point belongs to the red cluster, if the red walker has a higher probability at the point than the blue walker.

stationary distribution� k of each agentk. Then, nodei is
assigned a cluster labell i based on the maximum a posteri-
ori (MAP) criterion,

l i = arg max
k

p(! k jx i ): (13)

Figure 1 illustrates an MRW process of double random
walkers with the repulsive restart rule. In Figure 1(a), the
top two rows show initial probability distributions of the
red and blue walkers, which are randomly generated. The
bottom row is the result of the clustering. The clustering
result att = 0 is meaningless. However, as the iteration
goes on, each walker repels the other walker, while form-
ing a dominant cluster region. Consequently, the probabil-
ity distributions of the two walkers converge, respectively,
and the power balance between the walkers is achieved. By
comparing those probabilities at each node, we obtain the
clustering result in Figure 1(h), which coincides with the
intuitive clustering of the human visual system.

4. MRW Clustering – Image Examples

This section illustrates how the MRW clustering algo-
rithm with the repulsive restart rule can segment real im-
ages. With those image examples, we discuss the character-
istics of the MRW algorithm.

4.1. Methodology

Given an input image, we �rst construct a graphG =
(V; E). The image is initially over-segmented into SLIC
super-pixels [1], each of which becomes a node inV . For
the edge setE , we use the edge connection scheme in [33].
Speci�cally, each node is connected not only to its spatial
neighbors but also to the neighbors of the neighbors, and all
boundary nodes at the image border are connected to one
another.

For each edgeeij , we determine the af�nity weightwij

in (1), by employing the dissimilarity function

d(x i ; x j ) =
X

l

� l dl (x i ; x j ): (14)

We use �ve dissimilaritiesdl of node features, including
RGB and LAB super-pixel means, boundary cues, bag-of-
visual-words histograms of RGB and LAB colors [27]. We
average those dissimilarities using empirically determined
weights� l . Please refer to the supplemental materials for
details. By normalizing each column of the af�nity matrix
W = [ wij ], we obtain the transition matrixA .

To achieve bilayer segmentation, we employ double ran-
dom walkers, called foreground walker and background
walker, whose probability distributions are denoted byp f

andpb , respectively. These two walkers make interactions
according to

p ( t +1)
f = (1 � � )Ap ( t )

f + � r ( t )
f

p ( t +1)
b = (1 � � )Ap ( t )

b + � r ( t )
b (15)

with the repulsive restart rule. ByTheorem 1, it is guaran-
teed that the probability distributions converge to stationary
distributions� f and� b , respectively. However,� f and� b

depend on the initial distributionsp (0)
f andp (0)

b . Assuming
the center prior that foreground objects tend to appear near
the image center, we initializep (0)

f andp (0)
b to be uniformly

distributed at the interior nodes and the boundary nodes, re-
spectively, as shown in Figure 2(a).

4.2. Examples

Figure 2 illustrates the repulsive MRW process in an
image, which is shown in the lower right corner. In Fig-
ure 2(a), the top two rows show the initial probability distri-
butions of the foreground and background walkers, based
on the center prior, respectively. The bottom row is the
segmentation result, based on the MAP decision in (13).
At early stages, the foreground region is identi�ed around



(a) t = 0 (b) t = 3 (c) t = 10 (d) t = 15 (e) t = 20 (f) t = 25 (g) t = 30 (h) t = 50

Figure 2. A repulsive MRW process of foreground and background walkers in an image. The input image is shown in the lower right
corner. At each time instancet, from top to bottom, the probability distributions of the foreground and background walkers,p f andpb ,
and the segmentation result are shown.

the image center due to the initial distributions. However,
as the iteration continues, the foreground walker explores
nearby similar nodes, while competing with the background
walker. The repulsive restart rule facilitates discriminative
clustering. Finally, in Figure 2(h), the probability distribu-
tions converge, and we obtain a satisfactory segmentation
result that extracts the bear faithfully.

Figure 3 shows more examples. For comparison, we
also provide the segmentation results of the normalized cuts
(Ncut) algorithm [26] and the spectralk-means (SKM) al-
gorithm [21]. Both Ncut and SKM are spectral clustering
algorithms, which can be interpreted using the framework
of the conventional random walks [18, 19]. Thus, the pro-
posed MRW is related to Ncut and SKM. However, the
proposed algorithm is different from the spectral cluster-
ing. Note that, using the de�nition of the transition matrix
in [18, 19], the spectral clustering processes `right' eigen-
vectors of the transition matrix for the clustering. On the
contrary, the proposed algorithm uses the stationary distri-
bution, which is a `left' eigenvector of the transition matrix.
Furthermore, whereas the conventional random walks con-
sider only a single agent, the proposed algorithm employs
multiple agents and exploits their interactions.

In Figure 3, we see that Ncut and SKM tend to divide im-
ages along the strongest edges. In contrast, the proposed al-
gorithm extracts more meaningful foreground regions. We
note that this is not a fair comparison, since the proposed al-
gorithm assumes the center prior in the initialization of the
foreground and background distributions. The objective of
this comparison is to demonstrate different characteristics
of the proposed algorithm from the spectral clustering, not
to claim superior performance of the proposed algorithm.

The proposed algorithm is fully automatic, but it has
common components with the interactive segmentation
techniques [11, 15]. Especially, in [15], for each cluster
label, the RWR recursion is performed by employing user
scribbles as the restart distribution. The segmentation is
achieved by comparing the stationary distributions for the

(a) Input (b) Ncut (c) SKM (d) RWR (e) MRW

Figure 3. Bilayer segmentation results of the proposed MRW clus-
tering in comparison with the conventional approaches: Ncut [26],
SKM [21], and RWR. In the RWR results, the initial distributions
based on the center prior are used as the �xed restart distributions.

different labels. Thus, the initial distributions in the pro-
posed algorithm can be regarded as those scribbles. But,
whereas [15] assumes that user scribbles are completely
trustable, the proposed algorithm automatically begins with
rough initial guesses. As shown in Figure 2, the rough
guesses att = 0 are re�ned according to the interactions of
the walkers, ast increases. In other words, while [15] uses
�xed restart distributions, the proposed algorithm evolves
restart distributions adaptively to image contents in a time-
varying manner. Figure 3(d) shows the RWR segmentation
results when the rough guesses based on the center prior are



used as the �xed restart distributions. RWR yields inferior
performance to the proposed algorithm, since the walkers
do not interact and the restart distributions are �xed.

5. Image Cosegmentation

We propose a novel algorithm for image cosegmentation
based on the MRW system. The input is a set of imagesI =
f I 1; � � � ; I Z g, which contain similar objects. The objective
is to segment those objects jointly from all input images.

5.1. Initialization

For each imageI u in I , we construct a graph indepen-
dently of the other images, and adopt a foreground walker
and a background walker. We use the graph construction
scheme in Section 4.1. Letp f( u ) andpb( u) denote the prob-
ability distributions of the foreground walker and the back-
ground walker inI u , respectively. They are also initialized
based on the center prior, as described in Section 4.1.

5.2. Inter­Image Concurrence Computation

To exploit the correlation among images, we compute
the concurrence distributioncf( u ) of the foreground walker,
which indicates the similarity of each node in imageI u to
foreground objects in the other images.

Let W uv 2 RM � N be a matrix, in which the(i; j )th el-
ementwij represents the af�nity from nodej in imageI v

to nodei in imageI u . Here,M andN are the numbers of
nodes inI u andI v , respectively. These inter-image af�ni-
ties are computed between all nodes inI v and all nodes in
I u . We compute eachwij using a dissimilarity function,
similar to (14). However, we use features,e.g. SIFT [17]
and texton [9], which are widely used in object detection
and classi�cation. For more details, please refer to the sup-
plemental materials. Then, we obtain the transfer matrix
A uv from I v to I u by normalizing each column inW uv .

The transfer matrixA uv represents the correspondences
from nodes inI v to nodes inI u probabilistically. It hence
can transfer the foreground distributionp f( v) in I v to I u .
The transferred distribution,A uv p f( v) , can be used as an
inter-image estimate of the object location inI u . How-
ever, since the correspondences may be inaccurate espe-
cially on homogeneous regions,A uv p f( v) may be concen-
trated around a few nodes. For example, the foreground
distributionp f( v) in Figure 4(c) is transferred toA uv p f( v)

in Figure 4(d), but only the lower right part of the object
is overly highlighted. To overcome this limitation, in im-
ageI u , we perform the RWR recursion in (3) by employ-
ing A uv p f( v) as the restart distributionr . Notice that the
corresponding stationary distribution can be computed as
Su r = Su A uv p f( v) , where

Su = � (I � (1 � � )A u ) � 1 : (16)

(a) ImageI v (b) ImageI u

(c) p f( v ) (d) A uv p f( v ) (e) Su A uv p f( v )

Figure 4. Transferring the foreground distributionp f( v ) in im-
ageI v to imageI u . For the purpose of illustration, the manually
obtained ground-truthp f( v ) is used in this example.

In Figure 4(e), we see that this new estimateSu A uv p f( v)

approximates the object location inI u more faithfully.
By integrating the inter-image estimates from all images,

we obtain the concurrence distributioncf( u ) of the fore-
ground walker inI u as

cf( u ) =
1
Z

Su

X

v

A uv p f( v) ; (17)

whereZ is the number of input images. In other words,
cf( u ) is the overall inter-image estimate of the object loca-
tion in I u , obtained from all images. We compute the con-
currence distributioncb( u) of the background walker in a
similar manner.

5.3. Intra­Image MRW Clustering

Next, we perform an MRW clustering process to re-
�ne the foreground and background distributions,p f( u ) and
pb( u) , by employing the concurrence distributionscf( u ) and
cb( u) .

The repulsive restart rule in (12) is effective for cluster-
ing nodes according to their intra-image feature vectors. On
the other hand, the concurrence distributionscf( u ) andcb( u)

provide the inter-image estimates of object and background
locations, respectively. Thus, to exploit both the intra and
inter information, we de�ne the hybrid restart rule for the
foreground walker at imageI u as

� f( u )

�
f p f( u ) ; pb( u) g

�
= 
 � Q f( u ) p f( u ) + (1 � 
 )cf( u )

(18)
whereQ f( u ) is a diagonal matrix whose elements are the
posterior probabilities of the foreground walker and� is a
normalizing factor, as in (12). Also,
 is a parameter to
controls the balance between the repulsive interaction and
the concurrence preservation. In this work,
 is �xed to
0:3. We also de�ne the hybrid restart rule� b( u) for the
background walker in a similar manner.

Using these hybrid restart rules, we perform the iterative
MRW process to obtain the stationary distributions� f( u )



(a) Input (b) Initial (c) 1st pass (d) 2nd pass (e) 6th pass

Figure 5. The evolution of foreground distributions in the multi-
pass clustering. As the passes go on, the Taj Mahal is more clearly
highlighted.

and� b( u) of the foreground and background walkers. Then,
from the stationary distributions, we obtain the posterior
probabilities of the foreground and background walkers at
each node. Finally, we can achieve the bilayer segmentation
of imageI u based on the MAP criterion in (13).

5.4. Multi­Pass Re�nement

A single execution of the two steps,i.e. (Step 1) inter-
image concurrence computation and (Step 2) intra-image
MRW clustering, provides satisfactory cosegmentation re-
sults in most cases. However, multiple executions of the
steps are bene�cial in some cases. In such multi-pass re-
�nement, the resultant stationary distributions at Step 2 are
used as the input for computing the concurrent distributions
at Step 1 in the next execution.

Figure 5 exempli�es the multi-pass re�nement. Fig-
ure 5(b) shows the initial foreground distributions. In the
�rst pass, they are used to compute the stationary distribu-
tions of the foreground walkers in Figure 5(c). Those sta-
tionary distributions highlight not only the Taj Mahal but
also less important regions, such as the sky. By feeding
these distributions as new initial distributions in the second
pass, we obtain the stationary distributions in Figure 5(d),
and so on. Note that, as the passes go on, the Taj Mahal is
more clearly highlighted.

We need a stopping criterion for the multi-pass re�ne-
ment. The fundamental assumption of cosegmentation is

Algorithm 1 Image Cosegmentation
Input: GraphsG = f G1 ; � � � ; GZ g for a set of input imagesI

1: Initialize P( u ) = f p f( u ) ; pb( u ) g for eachI u . Section 4.1
2: repeat for each imageI u

3: Inter-image concurrence computation . Section 5.2
4: Intra-image MRW clustering . Section 5.3
5: Foreground extractionC = f C1 ; � � � ; CZ g
6: Computation of the foreground distance

P
u;v df (Cu ; Cv )

7: until the foreground distance stops decreasing
8: Pixel-level re�nement

Output: Segmentation mapsC = f C1 ; � � � ; CZ g

that foreground objects in images should be similar to one
another. In other words, every foreground node in imageI u

should have a similar node in another imageI v . To quan-
tify this property, letCu denote the set of the nodes inI u

that are classi�ed as the foreground. Then, the foreground
distancedf (Cu ; Cv ) from I u to I v is de�ned as

df (Cu ; Cv ) =
X

i 2 Cu

min
j 2 Cv

d(x i ; x j ) (19)

whered is the dissimilarity function used to compute the
inter-image af�nityW uv . Then, the overall foreground dis-
tance among all images is computed as

P
u;v df (Cu ; Cv ).

The multi-pass re�nement is terminated when the overall
distance stops decreasing.

Since each image is over-segmented into super-pixels to
reduce the number of graph nodes, the resultant foreground
and background distributions can be further re�ned at the
pixel level using a bilateral �lter [28]. Based on the spatial
distances and the LAB color differences in an input image,
we �lter the foreground and background distributions. The
segmentation accuracy is improved by about1% with this
pixel-level re�nement. Algorithm 1 summarizes the pro-
posed cosegmentation algorithm.

6. Experimental Results

We test the performance of the proposed MRW coseg-
mentation (MRW-CS) algorithm on the iCoseg dataset [3],
which is composed of 643 images of 38 object classes. For
each object class, similar images were searched with the
same theme, and sometimes were selected from the same
user's photo album. This is a realistic scenario for image
cosegmentation, which attempts to improve the segmenta-
tion accuracy of an input image by employing similar im-
ages. A segmentation accuracy is de�ned as the percentage
of correctly labeled pixels.

MRW-CS performs the inter-image concurrence compu-
tation to exploit the correlation across images. If this step
is skipped, MRW-CS is reduced to the MRW clustering
in Section 4, which segments each image independently.
Thus, we refer to the MRW clustering in Section 4 as the



Figure 6. Pairs of segmentation results, obtained by MRW-IS
(left) and MRW-CS (right).

Table 1. Cosegmentation performance on iCoseg data set.
# of images MRW

Class (used/total) [14] [30] [24] [31] IS CS
1 Alaskan bear 9/19 74.8 90.0 86.4 90.4 78.0 87.3
2 Balloon 8/24 85.2 90.1 89.0 90.4 64.1 97.7
3 Baseball 8/25 73.0 90.1 90.5 94.2 52.8 97.1
4 Bear 5/5 74.0 95.3 80.4 88.1 75.1 93.7
5 Elephant 7/15 70.1 43.1 75.0 86.7 68.1 93.1
6 Ferrari 11/11 85.0 89.9 84.3 95.6 83.7 91.9
7 Gymnastics 6/6 90.9 91.7 87.1 90.4 90.2 96.1
8 Kite 8/18 87.0 90.3 89.8 93.9 70.6 95.7
9 Kite panda 7/7 73.2 90.2 78.3 93.1 77.1 96.0
10 Liverpool 9/33 76.4 87.5 82.6 89.4 71.1 88.5
11 Panda 8/25 84.0 92.7 60.0 88.6 85.8 84.8
12 Skating 7/11 82.1 77.5 76.8 78.7 76.8 91.6
13 Statue 10/41 90.6 93.8 91.6 96.8 78.6 94.5
14 Stonehenge 5/5 56.6 63.3 87.3 92.5 77.3 95.9
15 Stonehenge 2 9/18 86.0 88.8 88.4 87.2 82.6 90.7
16 Taj Mahal 5/5 73.7 91.1 88.7 92.6 70.7 95.2

Average 78.9 85.4 83.5 90.5 75.2 93.1

independent segmentation (MRW-IS). For both CS and IS,
we �x the restart probability� in (5) to 0:2, and the cooling
factor � in (6) to 0:95. Also, for computing posterior prob-
abilities in (10), the prior probabilities for foreground and
background walkers are set top(! f ) = p(! b ) = 1

2 .
Figure 6 compares MRW-CS with MRW-IS. IS attempts

to separate an object from its background, but the de�ni-
tion of `object' is ambiguous. For instance, given the single
image of `Statue,' it is not clear whether the object should
consist of the head only or both the head and body. Thus, IS
may fail to delineate desired objects, especially in the cases
of weak boundaries or background clutter. In contrast, CS
overcomes the ambiguity, by extracting regions that occur
repeatedly across images. In Figure 6, CS segments out the
baseball player, the gymnast, and the statue faithfully.

Table 1 compares the accuracies of the proposed MRW-
IS and MRW-CS with those of conventional algorithms. For
each class, a number of images are selected for the coseg-
mentation. Since [30], the number has been �xed, but the
combination of the images is unknown. Hence, for each
class, the cosegmentation is performed with randomly se-
lected images. Then, the accuracy is averaged over 20 ran-
dom selections. Note that CS outperforms the conventional
algorithms in most cases. On average, as compared with
the state-of-the-art in [31], CS improves the accuracy by
about 3%. Figure 7 demonstrates that the proposed MRW-
CS yields �ne results, even though individual images are
challenging. Due to the page limitation, we provide more

(a) Balloon

(b) Baseball

(c) Kite Panda

(d) Skating

(e) Statue

(f) Stonehenge

Figure 7. Examples of cosegmentation results. Best viewed in
color.

examples in the supplemental materials.

7. Conclusions

We proposed the MRW system to simulate the interac-
tions of multiple agents on a graph. To achieve desired in-
teractions, a restart rule can be designed to determine the
restart distribution of an agent according to the probability
distributions of all agents. As a particular example, we de-
veloped the repulsive rule for data clustering. We discussed
the characteristics of the MRW clustering with image exam-
ples. Moreover, we proposed an ef�cient image cosegmen-
tation algorithm, composed of two main steps: inter-image
concurrence computation and intra-image MRW clustering.
Experimental results demonstrated that the proposed algo-
rithm outperforms the state-of-the art techniques signi�-
cantly on the iCoseg dataset. Future research issues include
the exploration of more applications of the MRW system
and the development of other restarting rules.
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