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Lowpass Filtering — Blurring or Smoothing

" .

Original ERER R} | | 13 Strong LPF

E .'_zc_’:}y._e_rage ‘ e.g. 21x21 moving

oo A |
” | | | | | ” average flter

anaaaaaad

Less strong LPF een B e

e.g. 11x11 moving | *** a vee a

average filter | [HIHH |||||||
,aa800088 | s2aaaaaad

soo a ; o d
T s | I e

aaaaaaad aaaaaadaad




Highpass Filtering — Edge Extraction
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FIGURE 4.24 Results of ideal highpass filtering the image in Fig. 4.11(a) with Dy = 15, 30, and 80,
respectively. Problems with ringing are quite evident in (a) and (b).



CTFT Formula and Its Derivation



Bridge Between Fourier Series and Transform

= Consider the periodic signal x(t)

+ X(1

= |ts Fourier coefficients are

(2T1

T k=0
a, =< .

sin(kw,T,) k=0
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Bridge Between Fourier Series and Transform

= Sketch ax on the k-axis
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= The sketch is obtained by sampling the sinc function.

= For each value of k, the signal x(t) has a periodic
component with weight ax. So, the above sketch
shows the frequency content of the signal x(t).



Bridge Between Fourier Series and Transform

= The same sketch ay on the m-axis:
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= On the p-axis, the distance between two consecutive
ax's iIs wo=2n/T, which is the fundamental frequency.



Bridge Between Fourier Series and Transform

= The same sketch Tay on the m-axis:
4 Ta.k

2T,
X(w)

&/ W—Zwo -0, [0 ZmW e

. The distance between two adjacent ay’s is wo=27/T.
= AS T%, 60090.

» The distance between two consecutive a,'s becomes zero
» The sketch of a, becomes continuous
» The continuous curve X(jw) is called as Fourier Transform




Bridge Between Fourier Series and Transform

= On the other hand, as T->®, the signal x(t) becomes
an aperiodic signal

t X(t)

= Fourier Transform can represent an aperiodic signal
In frequency domain



From CTFS to CTFT: Formal Derivation

= How can we use this formula for a non-
periodic (aperiodic) function x(t)?
X(t)

/T
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x(t) = lim (t)
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From CTFS to CTFT: Formal Derivation

= Given the relationships

X(t)= > ae’, x(t) =1im X(t)
K=—o0

a, = % j K(t)e F'dt
T

derive the following CTFT formula

_ 1 * . jot
x(t)—ﬂf_wX(Ja))e‘ dw

X (jo)= j“; x(t)e “dt




CTFT Formula = Fourier Transform Pair

=  Forward Transform

X (jo) = j“; x(t)e dt

=  |nverse Transform

X(t) = — [ X (jo)e"dw
27T 9

» X(Jw) represents the strength of frequency
component at w in x(t)



Time Domain vs. Frequency Domain

= Fourier analysis (series or transform) is a tool
to determine the frequency contents of a given
signal
» Conversion from time domain to frequency domain.

X(jo)=[ x(t)e dt

= |t is always possible to move back from
frequency domain to time domain

X(t) :% [" X(jwede




Some Examples

Ex 1) Impulse function — constant function

X(1)=0(t) <> X(jo)=| st)edt=1



Some Examples

Ex 2) Rectangular pulse — sinc function

X(jo) = jTT e it = 23'2}le — 2T, sing(“t )

sin(xt)

where sinc(t) [
7t

Note the inverse relationship between time and frequency domains



More Examples



Unified Framework for CTFS and CTFT:

Periodic Signals Can Also Be Represented as Fourier Transform




Fourier Transform for Periodic Signals

= Consider the inverse Fourier transform of

X(jo) = 3 278,50 —kay)

= S0, we can deduce that

X(t) = Z a el P X (jw) = Z 27a, 0 (w—Ka,)
k=—00

k=—00
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Fourier Transform for Periodic Signals

4 I
Ex 1) sin function
. 1 1
X(t) = sin(w,t) «—>>a, = 2 a, = 2
X(Jo)
4 7lj
— o,
)
2
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Ex 2) cos function

X(t) = cos(w,t) «—>—>a, =a, = %

X(Jw)




Fourier Transform for Periodic Signals

-
Ex 3) Fourier transform of impulse trains

T/2

X(t) = 250 KT)«>>a, = —j 5(t).e—ikwotdt:%

27T 27k
X(Jw)— Zé(w——)
k=—a0
X(®) A X(jo)
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Properties of CTFT



Properties of CTFT

1.  Linearity
a-x(t)+b-yt)«——aX(jo)+bY (jw)
2. Time shifting
X(t—t,) «F—e X (jw)
3. Conjugation and conjugate symmetry
X (1) «—— X (- jo)
X(jo)=X"(-]jw) [X(t) real]

4.  Differentiation and integration
dx(t)
dt

[ X(r)dret >j1 X (jo) + X (0)5()
0 ),

— " Ssijo-X(jo)




Properties of CTFT

5.  Time and frequency scaling

x(at) <+ x (12
a

|al

x(—t) <> X (- jo)

6. Parseval’s relation
0 1 oo .
L Ix@Fdt=—[ X(jo) de
o0 72' o0

7. Duality
g(t)«——G(jow) = G(jt)«——2mg(-w)



Convolution Property of CTFT

y(©) =h®) *x(t) «—— Y (jo)=H(jo) X(jo)

Two approaches for proof and understanding

LTI interpretation

x  Note that the frequency response H(jw) is just the
CTFT of the impulse response h(t).

Direct equation manipulation



Convolution Property of CTFT

= Lowpass Filter

,H(w)
X(j) ‘ 1 (o)

Y(Jo) =< X(Jo), —-0,<o< o,

0, W, < @



Convolution Property of CTFT

= Highpass Filter:

X(j) ‘ — 1 — (i)

Wy | @y

X(jo), o<-o,

Y(jw) =10, —@, < @ < W,

X(Jo), oy<ow



Convolution Property of CTFT

= Bandpass Filter:

,Hlo)

XGo) — 1 — Y(jo)

X(jo), -0 <w<-w,
Y(Jo) =< X(Jo), o <0< o,

0, otherwise



Examples



CTFT Table

TABLE 4.2  BASIC FOURIER TRANSFORM PAIRS

Fourier series coefficients

Signal Fourier transform (if periodic)
\ age’t’ 2m T ao(w — kwy) ay
k k= =ce
fin a a) = |
ey 277'()((1) (U(;) !
a, = 0, otherwise
. = ]
" ay = Q<) = =
COS ol 76w — wy) + 6(w + w)] -2
a; =0, otherwise
m a) = —a-) = I
: T =i
sinwyt [0(w = wy) = 8w + wy)] .
J a, = 0, otherwise
=1 a=0k#0
x(t) = | 21 6(w) this is the Fourier series representation for

any choice of 7 > ()




CTFT Table

Periodic square wave
i et ) sin k T . [koqT kwgT
x(t) = 5L 2 2sinkwoT . ) , woT)\  sinkwg
0 T,<|t| = 1 N — o(w — kwy) 071 ine [ —~! )— '
£ L k T T kr
and k=
x(t+T) = x(1)
27— 2k |
N8t - nT) N 3((0 : ) a, = — forall k
”._,( T A"’—“r( T I} 7 (
[ , [f|<T, 2sinwT
x(1) . ~—
Lo, t| > T, 0]
sin Wt l, |w|<W

— X(/w) = ! v » s
i : >




CTFT Table

(1) |
u(t) — + mo(w)
jw
(S“ f()) ¢ i
,, |
e “u(t), Rela} > 0 ,
a+ Jw
al ( | l
te”"u(t), Rela} > 0 ——
(a+ jo)
" oay(p), l

(n—1)!

Rela} > 0

(a jw)"




Multiplication Property of CTFT

() =50 pO) < >R(@) = [ S(1O)P(j(w-0))do

This is a dual of the convolution property



Multiplication Property of CTFT

Idea of AM (amplitude modulation)

FT of r(t) FT of p(t)=cosmgt modulation  g(t) = r(t)-p(t)
4 R(jo) 2 P(jo) t G(jo)
A
17
N N : ——A/2
- O o - Iooo colo
demodulation g(t)p(t) <—F> Q(jw) Original signal is recovered

‘ after a low-pass filter
A/2
A/4

A AN A
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Multiplication Property of CTFT

A communication system
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demodulation

modulation + bandpass filtering



Causal LTI Systems Described
by Differential Equations



Linear Constant-Coefficient Differential
Equations

N M d t
kZ:(; Z X()

=0

= The DE describes the relation between the input x(t)
and the output y(t) implicitly

= |n this course, we are interested in DEs that
describe causal LTI systems

=  Therefore, we assume the initial rest condition
If x(t)=0for t<t,, then y(t)=0for t<t,

which also implies

dy(t,) d " y(t,)
t j— —— e e o —— :O
y(t,) at JNL




Frequency Response

What is the frequency response H(jw) of the
following system?

ZN: a i d“ x(t)

k=0 =0

It is given by

H(j(())ZZkO b, (jw)"
Zk oak(Ja))




Example

Q) d? y(t)+ 2O 4 (t)_d (t)+2X(t) h
dt* dt
L x(t) = e u(t). y
A) Y(Jw)=H(Jjo)X(jo)

B Jo+2 1
 (jo)2+4(jo)+3 | | jo+1

B Joo+ 2
(jo+1)*(jo+3)

1 1 1

4 + 2 _ 4

T jo+l (jo+1)?  jo+3

1 1 1
— vyv(t)=| e '+ =_tet—=e |u(t
y(t) [4 > a } (t)

|



