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Lowpass Filtering – Blurring or Smoothing

Original Strong LPF

e.g. 21x21 moving 

average filter

Less strong LPF

e.g. 11x11 moving 

average filter

average



Highpass Filtering – Edge Extraction



CTFT Formula and Its Derivation



Bridge Between Fourier Series and Transform

 Consider the periodic signal x(t)

 Its Fourier coefficients are
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 Sketch ak on the k-axis 

 The sketch is obtained by sampling the sinc function.

 For each value of k, the signal x(t) has a periodic 
component with weight ak. So, the above sketch 
shows the frequency content of the signal x(t).
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 The same sketch ak on the -axis:

 On the -axis, the distance between two consecutive 

ak’s is 0=2/T, which is the fundamental frequency. 
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 The same sketch Tak on the -axis:

 The distance between two adjacent ak’s is 0=2/T.

 As T, 00. 
The distance between two consecutive ak’s becomes zero

The sketch of ak becomes continuous

The continuous curve X(jw) is called as Fourier Transform
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 On the other hand, as T, the signal x(t) becomes 
an aperiodic signal 

 Fourier Transform can represent an aperiodic signal
in frequency domain
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 How can we use this formula for a non-

periodic (aperiodic) function x(t)?
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From CTFS to CTFT: Formal Derivation
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 Given the relationships

derive the following CTFT formula

From CTFS to CTFT: Formal Derivation



CTFT Formula – Fourier Transform Pair
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 Forward Transform

 Inverse Transform

X(jw) represents the strength of frequency 

component at w in x(t) 



Time Domain vs. Frequency Domain

 Fourier analysis (series or transform) is a tool 

to determine the frequency contents of a given 

signal 

Conversion from time domain to frequency domain.

 It is always possible to move back from 

frequency domain to time domain
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Some Examples
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Ex 1) Impulse function → constant function



Ex 2) Rectangular pulse → sinc function
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Some Examples

Note the inverse relationship between time and frequency domains



More Examples



Unified Framework for CTFS and CTFT:

Periodic Signals Can Also Be Represented as Fourier Transform



Fourier Transform for Periodic Signals

 Consider the inverse Fourier transform of 

 So, we can deduce that
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Fourier Transform for Periodic Signals

Ex 1) sin function
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Ex 2) cos function
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Fourier Transform for Periodic Signals

Ex 3) Fourier transform of impulse trains
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Properties of CTFT



Properties of CTFT

1. Linearity

2. Time shifting

3. Conjugation and conjugate symmetry

4. Differentiation and integration
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Properties of CTFT

5. Time and frequency scaling

6. Parseval’s relation

7. Duality
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Convolution Property of CTFT

( ) ( ) ( )    ( ) ( ) ( )Fy t h t x t Y j H j X j      

 Two approaches for proof and understanding

1. LTI interpretation

Note that the frequency response H(jw) is just the 

CTFT of the impulse response h(t). 

2. Direct equation manipulation



 Lowpass Filter
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 Highpass Filter:

0

0 0

0

( ),

( ) 0,

( ),

X j

Y j

X j

 

   

  

 


   
 

Convolution Property of CTFT

H(j)


-0 0

1X(j) Y(j)



 Bandpass Filter:
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Examples



CTFT Table



CTFT Table



CTFT Table



Multiplication Property of CTFT
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 This is a dual of the convolution property
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Original signal is recovered 
after a low-pass filter

g(t) = r(t)p(t)

demodulation

Multiplication Property of CTFT

Idea of AM (amplitude modulation)



Multiplication Property of CTFT

A communication system
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Causal LTI Systems Described 

by Differential Equations



Linear Constant-Coefficient Differential 

Equations

 The DE describes the relation between the input x(t) 

and the output y(t) implicitly

 In this course, we are interested in DEs that 

describe causal LTI systems

 Therefore, we assume the initial rest condition

which also implies
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Frequency Response

 What is the frequency response H(jw) of the 

following system?

 It is given by
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Example
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