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Sampling

 Sampling is a procedure 

to extract a DT signal 

from a CT signals

 (b), (c), (d) are obtained 

by sampling (a)

 Is (b) enough to 

represent (a)?

 What is the adequate 

sampling rate to 

represent a given CT 

signal without information 

loss?



In general, DT signal cannot represent CT signal 

perfectly

Are these sample enough to reconstruct the original blue curve?



Sampling Theorem

 Under certain conditions, a CT signal can be completely 

represented by and recoverable from samples 

 A lowpass signal can be reconstructed from samples, if the 

sampling rate is high enough. Because it is a lowpass signal, 

the change between two close samples is constrained (or 

expected).

Let x(t) be a band-limited signal with X(jw) = 0 for 

|w| > wM. Then, x(t) is uniquely determined by its 

samples x(nT), if 

ws > 2 wM

where the sampling rate ws is defined as 

ws = 2p/T



Information Equivalence 
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Let x(t) be a band-limited signal with X(jw) = 0 for 

|w| > wM. Then, x(t) is uniquely determined by the 

modulated impulse train 

if 

ws > 2 wM 

where the sampling rate ws is defined as 

ws = 2p/T
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Restated Sampling Theorem

2 wM: Nyquist rate



Frequency Domain Interpretation

Show that

( ) ( ) ( )

1
( ) ( ( ))

p

n

p s

k

x t x nT t nT

X jw X j w kw
T










 

  







p(t)



Reconstruction: ideal lowpass filter

( ) 2

0 otherwise

sin sin
2( ) sinc( )

s

s

w
T w

H jw

w
t t

tTh t T
t T

t
T

p

pp




 



   

2

sw


2

sw

T

sw
sw

Reconstruction of Signal from Its Samples
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Reconstruction of Signal from Its Samples

 This is the way to reconstruct 

or interpolate xr(t) from 

samples x(nT)’s

 Note that xr(t) = x(t), if the 

sampling rate is higher than 

the Nyquist rate



Practical Interpolation Filters

 Ideal interpolation filters –
sinc function

Infinite duration

Not implementable

 Practical interpolation filters
Zero order holding 
(repetition)

First order holding (linear)



Practical Interpolation Filters



Undersampling Causes Aliasing

 Undersampling: sampling rate is less than Nyquist 

rate



Undersampling Causes Aliasing



Undersampling Causes Aliasing

 Rotating disk

1 rotation/second

 To avoid aliasing, it should be 

motion-pictured with at least 

2 frames/s.
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Undersampling Causes Aliasing

 12 frames/s
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Undersampling Causes Aliasing

 6 frames/s
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Undersampling Causes Aliasing

 3 frames/s
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Undersampling Causes Aliasing

 2 frames/s
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Undersampling Causes Aliasing

 12/11 = 1.09 frames/s
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DT Processing of CT Signals

 We assume that the sampling rate is higher than Nyquist rate

 So yc(t) = xc(t)

 Relation between modulated impulse train and DT signal
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DT Processing of CT Signals

CT system Hc(jw)
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This is true if xc(t) is band-limited and T satisfies the Nyquist condition



DT Processing of CT Signals

 Refer to Figure 7.25


