Digital Signal Processing

Chap 2. Discrete-Time Signals and Systems

Chang-Su Kim

Discrete-Time Signals

Representation

• Functional representation

Sequence representation

 $x[n] = \{\dots, 0, 0, 1, 4, 1, 0, 0, \dots\}$

Elementary Sequences

• Unit sample sequence (impulse function, delta function)

$$\delta[n] = \begin{cases} 0, & n \neq 0\\ 1, & n = 0 \end{cases}$$

• Unit step sequence

$$u[n] = \begin{cases} 1, & n \ge 0\\ 0, & n < 0 \end{cases}$$

- Exponential sequence $x[n] = A\alpha^n$
- Sinusoidal sequence $x[n] = A \cos(\omega_0 n + \phi)$

Properties of Impulse and Step Functions

Properties of Exponential and Sinusoidal Sequences

 $=r^{n}e^{j\omega_{0}n}$

• Exponential $x[n] = a^n$

Figure 2.1.5 Graphical representation of exponential signals.

Properties of $e^{j\omega_0 n}$ and $\cos(\omega_0 n)$

- $\omega_0 + 2\pi = \omega_0$
- They are periodic only if $\omega_0 N = 2\pi k$

cf) Note the differences from the CT case

Discrete-Time Systems

 $y[n] = T\{x[n]\}$

- Examples
 - 1. Ideal delay y[n] = x[n-2]
 - 2. Moving average

$$y[n] = \frac{1}{3}(x[n-1] + x[n] + x[n+1])$$

Memoryless Systems

- Memoryless Systems: The output y[n] at any instance n depends only on the input value at the current time n, i.e. y[n] is a function of x[n]
- Systems with Memory: The output y[n] at an instance n depends on the input values at past and/or future time instances as well as the current time instance
- Examples:
 - A resistor: y[n] = R x[n]
 - A unit delay system: y[n] = x[n-1]
 - An accumulator:

$$y[n] = \sum_{k=-\infty}^{n} x[k]$$

Proving or **Disproving** Mathematical Statement

- For a system to possess a given property, the property must hold for every possible input signal to the system
- A counter example is sufficient to prove that a system does not possess a property
- To prove that the system has the property, we must prove that the property holds for every possible input signal

Linear Systems

- A system is linear if it satisfies two properties.
 - Additivity: $x_1[n] + x_2[n] \Rightarrow y_1[n] + y_2[n]$
 - Homogeneity: $cx_1[n] \Rightarrow cy_1[n]$
- The two properties can be combined into a single property (linearity).
 a₁x₁[n] + a₂x₂[n] ⇒ a₁y₁[n] + a₂y₂[n]
- Examples
 - $y[n] = x^2[n]$
 - $y[n] = \log |x[n]|$
 - y[n] = 2x[n] + 3
 - $y[n] = \sum_{k=-\infty}^{n} x[k]$

Time-Invariant Systems

 A system is time-invariant if a delay (or a time-shift) in the input signal causes the same amount of delay in the output.

$$x[n-n_0] \Rightarrow y[n-n_0]$$

- Examples:
 - $y[n] = x^2[n]$
 - $y[n] = \sin |x[n]|$
 - y[n] = x[2n]
 - $y[n] = \sum_{k=-\infty}^{n} x[k]$

Causal Systems

- Causality: A system is causal if the output at any time instance depends only on the input values at the current and/or past time instances.
- Examples:

$$- y[n] = x[n] - x[n-1]$$

- y[n] = x[n+1]
- A memoryless system is always causal.

Stable Systems

Stability: A system is stable if a <u>bounded input</u> yields a <u>bounded output</u> (BIBO).

- In other words, if $|x[n]| < k_1$ then $|y[n]| < k_2$.

- Examples:
 - $y[n] = x^2[n]$
 - $y[n] = \sin |x[n]|$
 - y[n] = x[2n]
 - $y[n] = \sum_{k=-\infty}^{n} x[k]$

Linear Time-Invariant Systems and Their Properties

Divide and Conquer

- Divide an input signal into a sum of shifted scaled versions of an elementary signal
- If you know the system output in response to the elementary signal, you also know the output in response to the input signal
- Ex) An LTI system processes $x_1[n]$ to make $y_1[n]$. The same system processes another input $x_2[n]$ to make $y_2[n]$. Plot $y_2[n]$.

Representing Signals in Terms of Impulses

Sifting property $x[n] = \sum x[k]\delta[n-k]$ $k = -\infty$ $+x[-2]\delta[n+2]$ $+x[-1]\delta[n+1]$ $+x[0]\delta[n]$ $+x[1]\delta[n-1]$ $+x[2]\delta[n-2]$ +...

Impulse Response

The response of a system H to the unit impulse δ[n] is called the impulse response, which is denoted by h[n]

 $-h[n] = H\{\delta[n]\}$

- Let h[n] be the impulse response of an LTI system.
- Given *h*[*n*], we can compute the response *y*[*n*] of the system to any input signal *x*[*n*].

- Let h[n] be the impulse response of an LTI system.
- Given *h*[*n*], we can compute the response *y*[*n*] of the system to any input signal *x*[*n*].

- Let h[n] be the impulse response of an LTI system.
- Given h[n], we can compute the response y[n] of the system to any input signal x[n].

$$x[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k]$$

$$y[n] = H[x[n]]$$
$$= H\left[\sum_{k=-\infty}^{\infty} x[k]\delta[n-k]\right]$$
$$= \sum_{k=-\infty}^{\infty} H\left[x[k]\delta[n-k]\right]$$
$$= \sum_{k=-\infty}^{\infty} x[k]H\left[\delta[n-k]\right]$$
$$= \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

• Notation for convolution sum

$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

• The characteristic of an LTI system is completely determined by its impulse response.

$$\begin{array}{c|c} \delta[n] \\ \hline x[n] \end{array} \begin{array}{c} \mathsf{LTI} \\ \mathsf{system} \\ x[n] \end{array} \begin{array}{c} h[n] \\ \hline x[n] \ast h[n] \end{array}$$

• To compute the convolution sum

$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

Step 1 Plot x and h vs k since the convolution sum is on k.

- **Step 2** Flip h[k] around the vertical axis to obtain h[-k].
- **Step 3** Shift h[-k] by *n* to obtain h[n-k].
- **Step 4** Multiply to obtain x[k]h[n-k].
- **Step 5** Sum on k to compute $\sum x[k]h[n-k]$.
- **Step 6** Change *n* and repeat **Steps 3-6**.

- Consider an LTI system that has an impulse response h[n] = u[n]
- What is the response when an input signal is given by $x[n] = a^n u[n]$

where 0 < a < 1?

• For
$$n \ge 0$$
,
 $y[n] = \sum_{k=0}^{n} \alpha^{k}$

$$= \frac{1 - \alpha^{n+1}}{1 - \alpha}$$

• Therefore,

$$y[n] = \left(\frac{1 - \alpha^{n+1}}{1 - \alpha}\right) u[n]$$

- Consider an LTI system that has an impulse response h[n] = u[n] - u[n - N]
- What is the response when an input signal is given by

 $x[n] = a^n u[n]$

where 0 < a < 1?

- Identity property $x[n] * \delta[n] = x[n]$
- Shifting property $x[n] * \delta[n-k] = x[n-k]$

Commutative property
 x[n] * h[n] = h[n] * x[n]

• Associative property ${x[n] * h_1[n]} * h_2[n] = x[n] * {h_1[n] * h_2[n]}$

• Distributive property $x[n] * [h_1[n] + h_2[n]] = x[n] * h_1[n] + x[n] * h_2[n]$

Causality of LTI Systems

- A system is causal if its output depends only on the past and present values of the input signal.
- Consider the following for a causal LTI system:

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

- Because of causality h[n-k] must be zero for k > n.
- In other words, h[n] = 0 for n < 0.

Causality of LTI Systems

• So the convolution sum for a causal LTI system becomes

$$y[n] = \sum_{k=-\infty}^{n} x[k]h[n-k] = \sum_{k=0}^{\infty} h[k]x[n-k]$$

• So, if a given system is causal, one can infer that its impulse response is zero for negative time values, and use the above simpler convolution formulas.

Stability of LTI Systems

- A system is stable if a bounded input yields a bounded output (BIBO). In other words, if $|x[n]| < M_x$ then $|y[n]| < M_y$.
- Note that

$$\left|y[n]\right| = \left|\sum_{k=-\infty}^{\infty} x[n-k]h[k]\right| \le \sum_{k=-\infty}^{\infty} \left|x[n-k]\right| \left|h[k]\right| \le M_x \sum_{k=-\infty}^{\infty} \left|h[k]\right|$$

• Therefore, a system is stable if

$$\sum_{k=-\infty}^{\infty} \left| h[k] \right| < \infty$$

System	Impulse response	Causal	Stable
$y[n] = x[n - n_d]$			
$y[n] = \frac{1}{M_1 + M_2 + 1} \sum_{k=-M_1}^{M_2} x[n-k]$			
$y[n] = \sum_{k=-\infty}^{n} x[k]$			
y[n] = x[n+1] - x[n]			
y[n] = x[n] - x[n-1]			

Discrete-Time Systems

Figure 2.2.7 Block diagram realizations of the system y(n) = 0.25y(n-1) + 0.5x(n) + 0.5x(n-1).

Recursive Systems

- If an impulse response has a finite duration, the system is an FIR system. Otherwise, an IIR system.
- An FIR system can be implemented directly using a finite number of adders, multipliers and delays.
 - e.g.) Implement the system with h[n]

Recursive Systems

• Can you directly implement the cumulative averaging system?

$$y(n) = \frac{1}{n+1} \sum_{k=0}^{n} x(k), \quad n = 0, 1, \dots$$

- It can be implemented in a recursive manner with a feedback loop
 - Past output values are used to compute a current output value

Figure 2.4.1 Realization of a recursive cumulative averaging system.

$$\sum_{k=0}^{N} a_{k} y[n-k] = \sum_{k=0}^{M} b_{k} x[n-k]$$

- The equation defines a recursive system, which processes an input x[n] to make the output y[n]
- *N* is the order of the equation or the corresponding system

$$\sum_{k=0}^{N} a_{k} y[n-k] = \sum_{k=0}^{M} b_{k} x[n-k]$$

• Example 1: Accumulator $y[n] = \sum_{k=-\infty}^{n} x[k]$

$$\sum_{k=0}^{N} a_{k} y[n-k] = \sum_{k=0}^{M} b_{k} x[n-k]$$

• Example 1: MA System $y[n] = \frac{1}{M_2+1} \sum_{k=0}^{M_2} x[n-k]$

$$\sum_{k=0}^{N} a_{k} y[n-k] = \sum_{k=0}^{M} b_{k} x[n-k]$$

Suppose that x[n] is given, and we want to get y[n] for n ≥ 0. Which information do we need further?

$$\sum_{k=0}^{N} a_{k} y[n-k] = \sum_{k=0}^{M} b_{k} x[n-k]$$

- Initial rest condition
 - If x[n] starts at $n = n_0$, i.e., x[n] = 0 when $n < n_0$, then y[n] = 0 when $n < n_0$.
 - Alternatively, the initial values are $y[n_0 - 1] = y[n_0 - 2] = \cdots = y[n_0 - N] = 0.$
- If we assume the initial rest condition, then the system described by the equation is LTI.

 More details will be studied later, especially in Chap 6. **Frequency Domain Representation of Discrete-Time Signals and Systems**

Eigenfunctions for LTI Systems

- $e^{j\omega n}$ is an eigenfunction of LTI systems
- Its eigenvalue is given by the Fourier transform of impulse response, $H(e^{j\omega})$, which is called *frequency* response

$$H(e^{j\omega}) = \sum_{k=-\infty}^{\infty} h[k]e^{-j\omega k}$$

 \sim

Eigenfunctions for LTI Systems

Frequency Response

• Ex) Determine the output sequence of the system with impulse response

$$h[n] = \frac{1}{2^n} u[n]$$

when the input is a complex exponential

$$x[n] = Ae^{j\frac{\pi}{2}n}$$

Frequency Response

• Ex) Determine the magnitude and phase of $H(e^{j\omega})$ for the three-point moving average (MA) system

$$y[n] = \frac{1}{3} \{x[n+1] + x[n] + x[n-1]\}.$$

Sinusoidal Input

• Assuming that *h*[*n*] is real, we have the input-output relationship

$$A\cos(\omega_0 n + \phi) \longrightarrow \text{LTI} \longrightarrow A |H(e^{j\omega_0})|\cos(\omega_0 n + \phi + \theta(\omega_0))$$

 $H(e^{j\omega}) = \left| H(e^{j\omega}) \right| e^{j\theta(\omega)}$

- 1. The amplitude is multiplied by $|H(e^{j\omega})|$
- 2. The output has a phase lag relative to the input by an amount $\theta(\omega) = \angle H(e^{j\omega})$

Ideal Filters

$$H(e^{j\omega}) = H(e^{j(\omega+2\pi r)})$$

Representation of Sequences by Fourier Transforms

Discrete-Time Fourier Transform

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$
$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}$$

- DTFT can be derived from DTFS (discrete-time Fourier series)
- Frequency response is the DTFT of impulse response
- The existence of $X(e^{j\omega})$
 - A sufficient condition: x[n] is absolutely summable
 - We avoid rigorous conditions/proofs and use well-known
 Fourier transform pairs

Fourier Transform Pairs

TABLE 2.3FOURIER TRANSFORM PAIRS

Sequence	Fourier Transform
1. δ[n]	1
2. $\delta[n - n_0]$	$e^{-j\omega n_0}$
3. 1 $(-\infty < n < \infty)$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega + 2\pi k)$
4. $a^n u[n]$ (<i>a</i> < 1)	$\frac{1}{1 - ae^{-j\omega}}$
5. <i>u</i> [<i>n</i>]	$\frac{1}{1-e^{-j\omega}} + \sum_{k=-\infty}^{\infty} \pi \delta(\omega + 2\pi k)$
6. $(n+1)a^n u[n]$ $(a < 1)$	$\frac{1}{(1-ae^{-j\omega})^2}$
7. $\frac{r^n \sin \omega_p (n+1)}{\sin \omega_p} u[n] (r < 1)$	$\frac{1}{1 - 2r\cos\omega_p e^{-j\omega} + r^2 e^{-j2\omega}}$
8. $\frac{\sin \omega_c n}{\pi n}$	$X(e^{j\omega}) = \begin{cases} 1, & \omega < \omega_c, \\ 0, & \omega_c < \omega \le \pi \end{cases}$
9. $x[n] = \begin{cases} 1, & 0 \le n \le M \\ 0, & \text{otherwise} \end{cases}$	$\frac{\sin[\omega(M+1)/2]}{\sin(\omega/2)}e^{-j\omega M/2}$
10. $e^{j\omega_0 n}$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 + 2\pi k)$
11. $\cos(\omega_0 n + \phi)$	$\sum_{k=-\infty}^{\infty} [\pi e^{j\phi} \delta(\omega - \omega_0 + 2\pi k) + \pi e^{-j\phi} \delta(\omega + \omega_0 + 2\pi k)]$

Symmetry Property

TABLE 2.1 SYMMETRY PROPERTIES OF THE FOURIER TRANSFORM

Sequence x[n]	Fourier Transform $X(e^{j\omega})$	
1. $x^*[n]$	$X^*(e^{-j\omega})$	
2. $x^*[-n]$	$X^*(e^{j\omega})$	
3. $\mathcal{R}e\{x[n]\}$	$X_e(e^{j\omega})$ (conjugate-symmetric part of $X(e^{j\omega})$)	
4. $j\mathcal{I}m\{x[n]\}$	$X_o(e^{j\omega})$ (conjugate-antisymmetric part of $X(e^{j\omega})$)	
5. $x_e[n]$ (conjugate-symmetric part of $x[n]$)	$X_R(e^{j\omega}) = \mathcal{R}e\{X(e^{j\omega})\}$	
6. $x_o[n]$ (conjugate-antisymmetric part of $x[n]$)	$jX_I(e^{j\omega}) = j\mathcal{I}m\{X(e^{j\omega})\}$	
The following properties apply only when $x[n]$ is real:		
7. Any real $x[n]$	$X(e^{j\omega}) = X^*(e^{-j\omega})$ (Fourier transform is conjugate symmetric)	
8. Any real $x[n]$	$X_R(e^{j\omega}) = X_R(e^{-j\omega})$ (real part is even)	
9. Any real $x[n]$	$X_I(e^{j\omega}) = -X_I(e^{-j\omega})$ (imaginary part is odd)	
10. Any real $x[n]$	$ X(e^{j\omega}) = X(e^{-j\omega}) $ (magnitude is even)	
11. Any real $x[n]$	$\angle X(e^{j\omega}) = -\angle X(e^{-j\omega})$ (phase is odd)	
12. $x_e[n]$ (even part of $x[n]$)	$X_R(e^{j\omega})$	
13. $x_o[n]$ (odd part of $x[n]$)	$jX_I(e^{j\omega})$	

Symmetry Property

Figure 2.22 Frequency response for a system with impulse response $h[n] = a^n u[n]$. a > 0; a = 0.75 (solid curve) and a = 0.5 (dashed curve). (a) Real part. (b) Imaginary part. (c) Magnitude. (d) Phase.

Fourier Transform Theorems

TABLE 2.2 FOURIER TRANSFORM THEOREMS

Sequence	Fourier Transform	
x[n]	$X\left(e^{j\omega} ight)$	
<i>y</i> [<i>n</i>]	$Y(e^{j\omega})$	
1. $ax[n] + by[n]$	$aX(e^{j\omega})+bY(e^{j\omega})$	
2. $x[n - n_d]$ (n_d an integer)	$e^{-j\omega n_d} X\left(e^{j\omega}\right)$	
3. $e^{j\omega_0 n} x[n]$	$X(e^{j(\omega-\omega_0)})$	
4. $x[-n]$	$ \begin{array}{l} X\left(e^{-j\omega}\right) \\ X^*(e^{j\omega}) \text{if } x[n] \text{ real.} \end{array} $	
5. <i>nx</i> [<i>n</i>]	$jrac{dX\left(e^{j\omega} ight)}{d\omega}$	
6. $x[n] * y[n]$	$X(e^{j\omega})Y(e^{j\omega})$	
7. $x[n]y[n]$	$\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$	

Parseval's theorem:

8.
$$\sum_{n=-\infty}^{\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(e^{j\omega})|^2 d\omega$$

9.
$$\sum_{n=-\infty}^{\infty} x[n] y^*[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) Y^*(e^{j\omega}) d\omega$$

Convolution Theorem

• $y[n] = x[n] * h[n] \Rightarrow Y(e^{j\omega}) = X(e^{j\omega})H(e^{j\omega})$

Convolution Theorem: Another Perspective

 $x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega$

$$y[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) H(e^{j\omega}) e^{j\omega n} d\omega$$

• $x[n] = a^n u[n-5]$. What is $X(e^{j\omega})$?

•
$$X(e^{j\omega}) = \frac{1}{(1-ae^{-j\omega})(1-ae^{-j\omega})}$$
. What is $x[n]$?

•
$$X(e^{j\omega}) = \frac{1}{(1-ae^{-j\omega})(1-be^{-j\omega})}$$
. What is $x[n]$?

• Determine the impulse response *h*[*n*] of a highpass filter with frequency response

$$H(e^{j\omega}) = \begin{cases} e^{-j\omega n_d}, & \omega_c < |\omega| < \pi, \\ 0, & |\omega| < \omega_c. \end{cases}$$

• Determine the frequency response and the impulse response of a system described by a CCDE

$$y[n] - \frac{1}{2}y[n-1] = x[n] - \frac{1}{4}x[n-1].$$