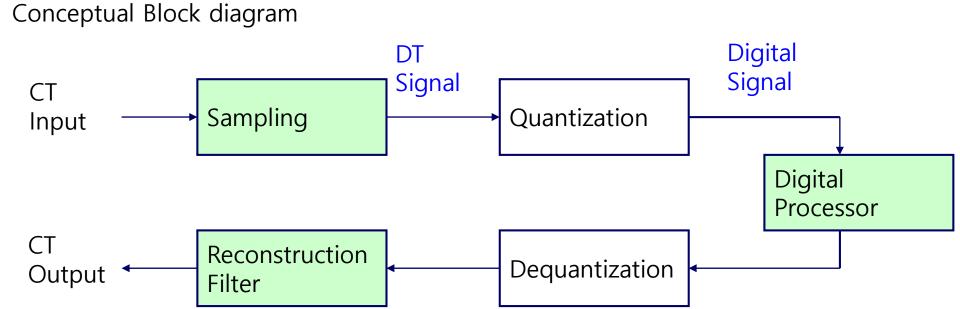
Digital Signal Processing

Chap 4. Sampling of Continuous-Time Signals

Chang-Su Kim

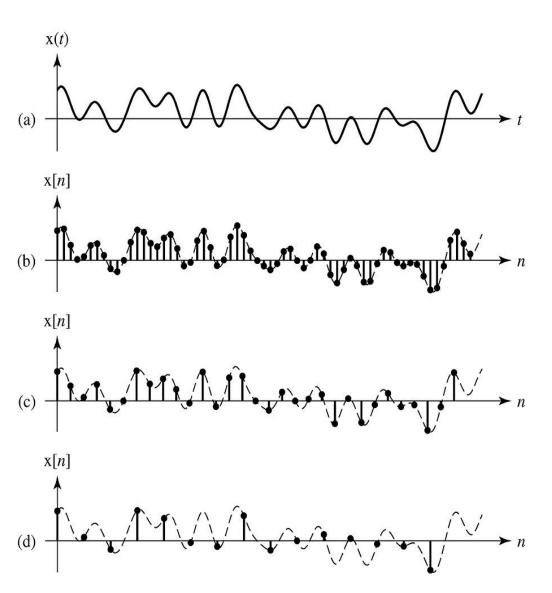
Digital Processing of Continuous-Time Signals

- Digital processing of a CT signal involves three basic steps
 - Conversion of the CT signal into a DT signal
 - 2. Processing of the DT signal
 - 3. Conversion of the processed DT signal back into a CT signal



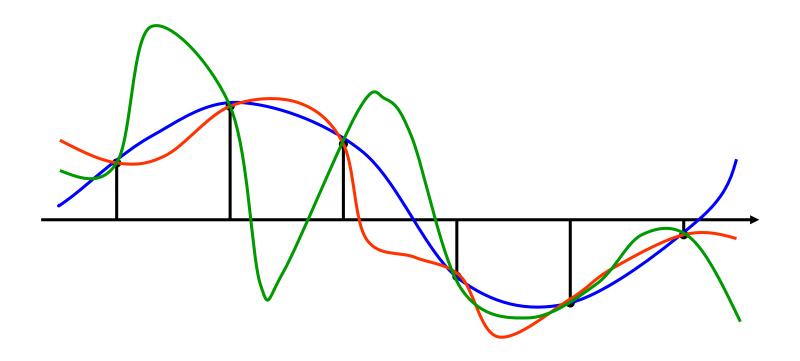
Sampling

Sampling



- Sampling is a procedure to extract a DT signal from a CT signals
- (b), (c), (d) are obtained by sampling (a)
- Is (b) enough to represent (a)?
- What is the adequate sampling rate to represent a given CT signal without information loss?

In general, DT signal cannot represent CT signal perfectly



Are these sample enough to reconstruct the original blue curve?

Continuous-Time Fourier Transform

- CTFT Formulae
 - Forward transform

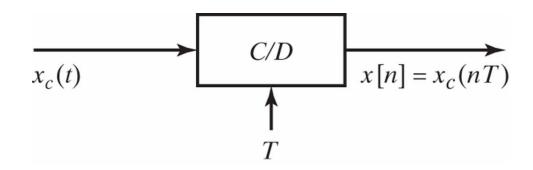
$$X(j\Omega) = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt$$

Inverse transform

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\Omega) e^{j\Omega t} d\Omega$$

- We will use a number of properties of CTFT without proofs
 - They are studied in the course Signals and Systems

Periodic Sampling



- C/D (continuous-time to discrete-time) **CONVERTER**
- $x[n] = x_c(nT), -\infty < n < \infty$.
 - -T: sampling period
 - $-\Omega_S = \frac{2\pi}{T}$ (or $f_S = \frac{1}{T}$): sampling frequency

Periodic Sampling

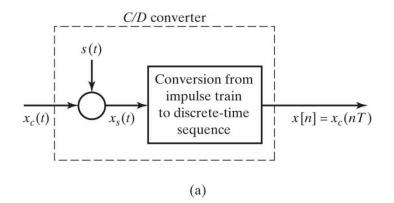
 Conceptually, it is easier to introduce an impulse train for the C/D conversion

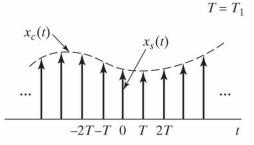
•
$$s(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT)$$

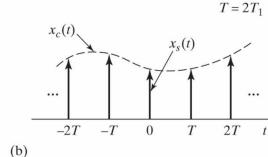
•
$$x_s(t) = x_c(t)s(t) =$$

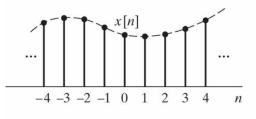
$$\sum_{n=-\infty}^{\infty} x_c(nT)\delta(t-nT)$$

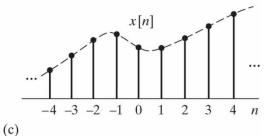
- $x_s(t)$ and x[n] have the same information
 - Given $x_s(t)$, we can make x[n].
 - Given x[n], we can make $x_s(t)$.





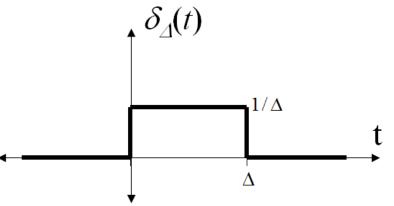






Approximated unit impulse

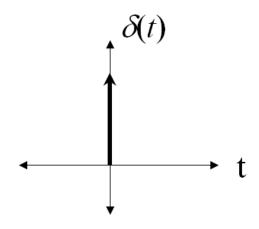
$$\delta_{\Delta}(t) = \frac{du_{\Delta}(t)}{dt} = \begin{cases} \frac{1}{\Delta}, & 0 \le t < \Delta \\ 0, & \text{otherwise} \end{cases}$$



Unit Impulse:

$$\delta(t) = \lim_{\Delta \to 0} \delta_{\Delta}(t) = \begin{cases} \infty, & t = 0 \\ 0, & t \neq 0 \end{cases}$$

$$\int_{a}^{b} \delta(t)dt = 1 \quad \text{for any } a > 0 \text{ and } b > 0.$$

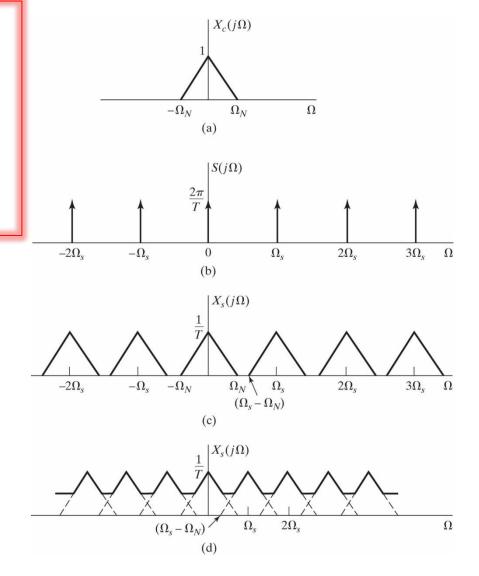


Frequency-Domain Representation of Sampling

•
$$S(j\Omega) = \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta(\Omega - k\Omega_S)$$

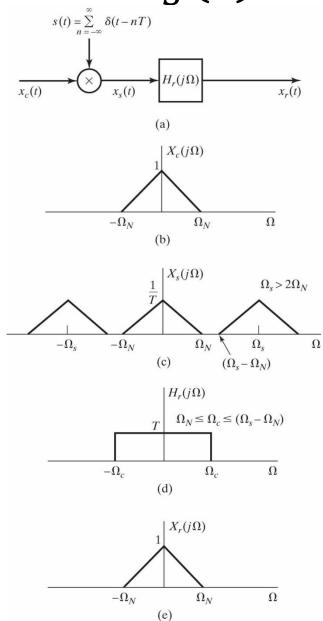
•
$$X_S(j\Omega) = \frac{1}{2\pi} X_C(j\Omega) * S(j\Omega)$$

= $\frac{1}{T} \sum_{k=-\infty}^{\infty} X_C(j(\Omega - k\Omega_S))$



Recovery of $x_c(t)$ from $x_s(t)$

- If you can recover $x_c(t)$ from $x_s(t)$, you can recover $x_c(t)$ from x[n].
- Recovery is possible through an ideal low-pass filter when $\Omega_s > 2\Omega_N$.



Nyquist-Shannon Sampling Theorem

Let $x_c(t)$ be a band-limited signal with

$$X_c(j\Omega) = 0$$
 for $|\Omega| \ge \Omega_N$.

Then $x_c(t)$ is uniquely determined by its samples $x[n] = x_c(nT)$, $-\infty < n < \infty$, if

$$\Omega_S = \frac{2\pi}{T} \ge 2\Omega_N.$$

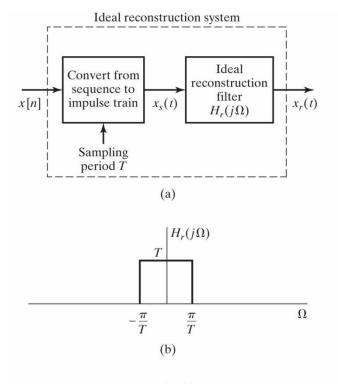
- $2\Omega_N$ is called the Nyquist rate.
- Under certain conditions, a CT signal can be completely represented by and recoverable from samples
- A low-pass signal can be reconstructed from samples, if the sampling rate is high enough. Because it is a low-pass signal, the change between two close samples is constrained (or expected).

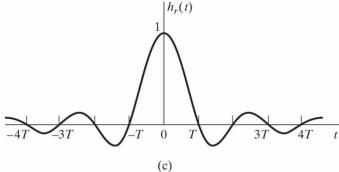
Recovery of $x_c(t)$ from $x_s(t)$

•
$$h_r(t) = \frac{\sin(\frac{\pi t}{T})}{\frac{\pi t}{T}}$$

•
$$x_s(t) = \sum_{n=-\infty}^{\infty} x[n]\delta(t-nT)$$

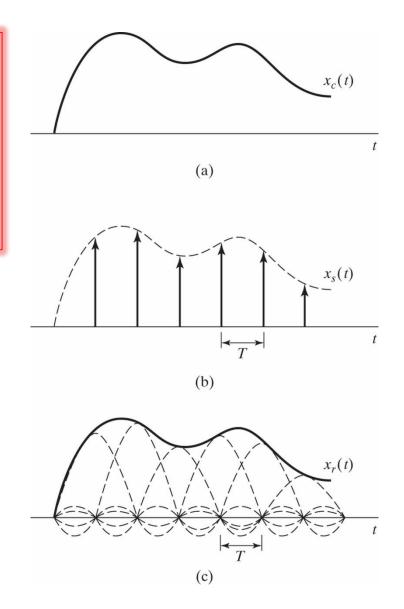
•
$$x_r(t) = \sum_{n=-\infty}^{\infty} x[n] \frac{\sin(\frac{\pi(t-nT)}{T})}{\frac{\pi(t-nT)}{T}}$$





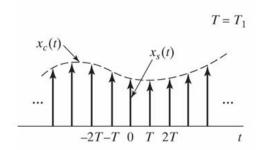
Recovery of $x_c(t)$ from x[n]

$$x_r(t) = \sum_{n = -\infty}^{\infty} x[n] \frac{\sin(\frac{\pi(t - nT)}{T})}{\frac{\pi(t - nT)}{T}}$$

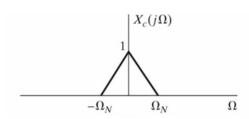


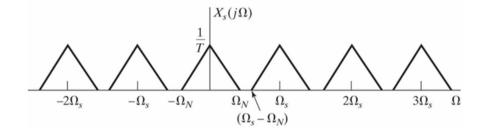
Summary

• $s(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT)$, $x_s(t) = x_c(t)s(t)$

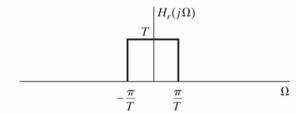


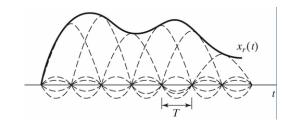
• $X_S(j\Omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_C(j(\Omega - k\Omega_S))$





•
$$X_r(j\Omega) = X_s(j\Omega)H_r(j\Omega), \quad x_r(t) = \sum_{n=-\infty}^{\infty} x[n] \frac{\sin(\frac{\pi(t-nT)}{T})}{\frac{\pi(t-nT)}{T}}$$





Frequency-Domain Relationship between x[n] and $x_s(t)$

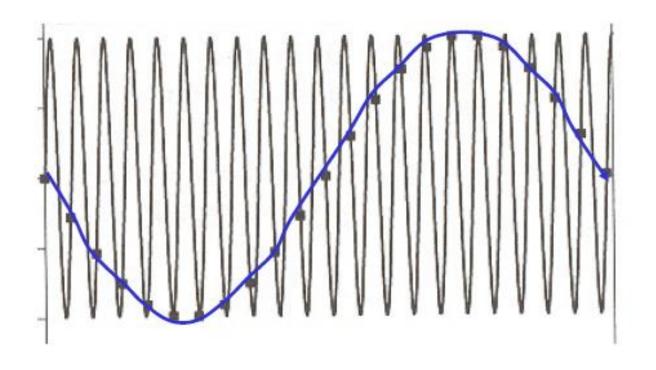
• Relationship between $X(e^{j\omega})$ and $X_s(j\Omega)$

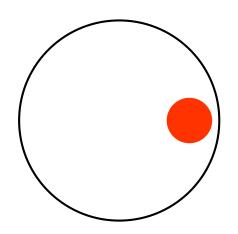
$$X(e^{j\omega}) = X_S(j\frac{\omega}{T})$$
$$X_S(j\Omega) = X(e^{j\Omega T})$$

• Recall that $X(e^{j\omega})$ is always periodic

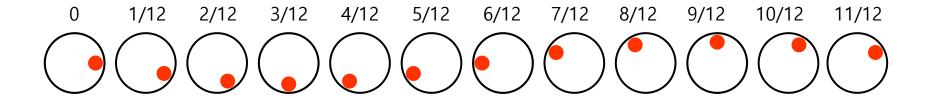
Aliasing

Undersampling: sampling rate is less than Nyquist rate

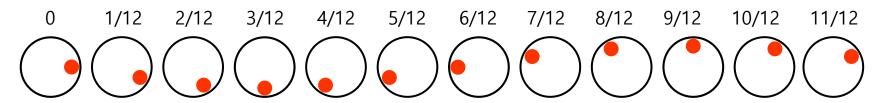


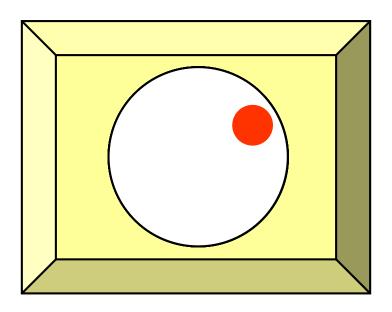


- Rotating disk
 - 1 rotation/second
- To avoid aliasing, it should be motion-pictured with at least 2 frames/s.

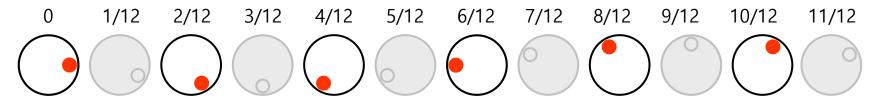


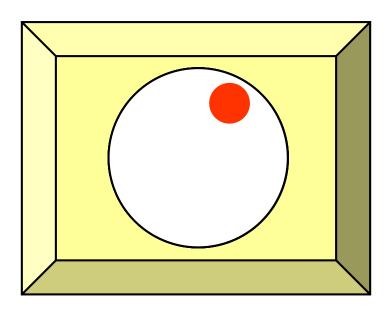
• 12 frames/s



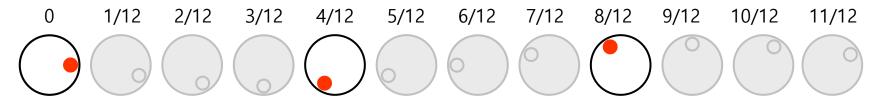


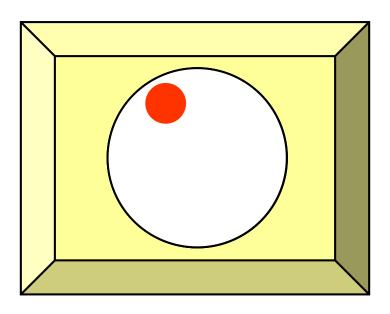
6 frames/s



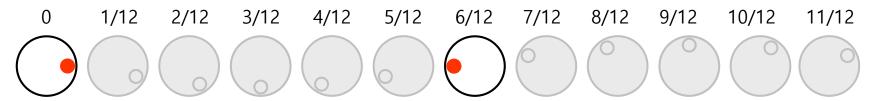


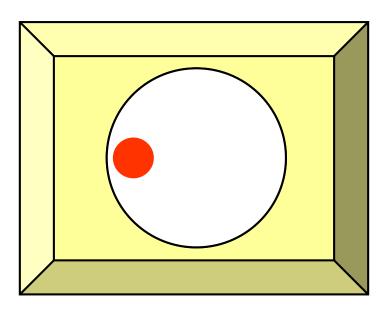
• 3 frames/s



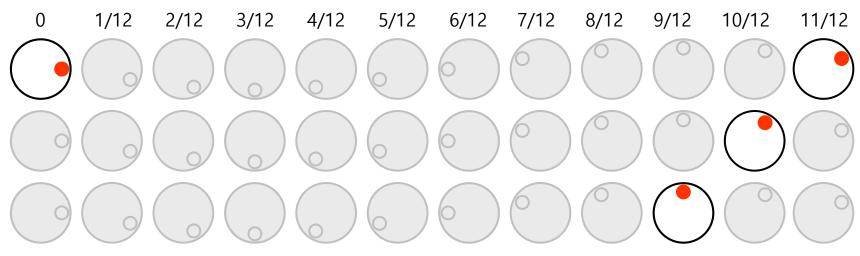


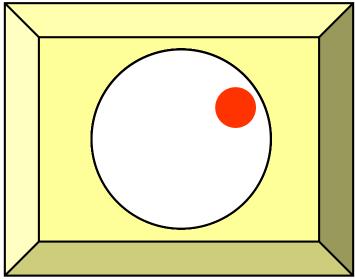
• 2 frames/s





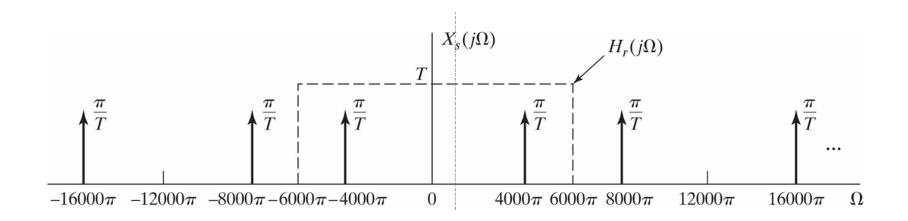
• 12/11 = 1.09 frames/s





Examples

• $x_c(t) = \cos(4000\pi t)$, T = 1/6000.

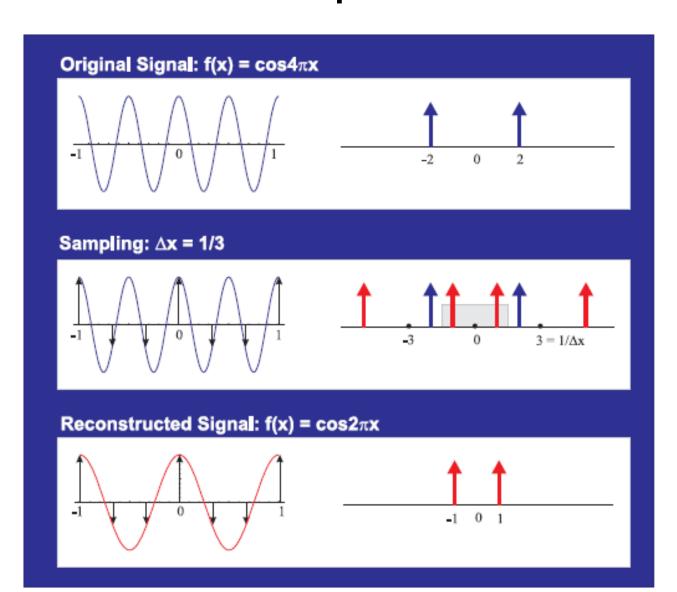


- $1 \leftrightarrow 2\pi\delta(\Omega)$
- $\cos(\Omega_0 t) \longleftrightarrow \pi(\delta(\Omega \Omega_0) + \delta(\Omega + \Omega_0))$
- $\sin(\Omega_0 t) \longleftrightarrow \frac{\pi}{j} (\delta(\Omega \Omega_0) \delta(\Omega + \Omega_0))$

Examples

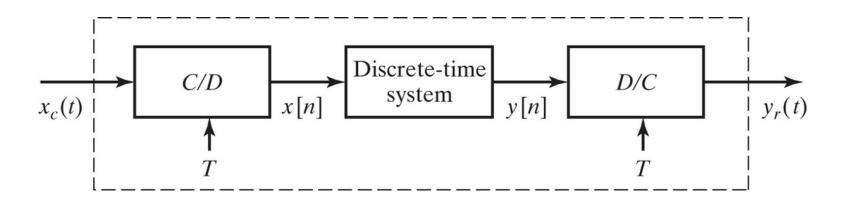
• $x_c(t) = \cos(16000\pi t)$, T = 1/6000.

Examples



DT Processing of CT Signals

C/D and D/C conversions



C/D

$$X(e^{j\omega}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c \left(j \left(\frac{\omega}{T} - \frac{2\pi k}{T} \right) \right)$$

D/C

$$Y_r(j\Omega) = H_r(j\Omega)Y(e^{j\Omega T}) = \begin{cases} TY(e^{j\Omega T}), & |\Omega| < \frac{\pi}{T} \\ 0, & \text{Otherwise} \end{cases}$$

Relationship between x[n] and $x_s(t)$

$$X(e^{j\omega}) = X_s \left(j \frac{\omega}{T} \right),$$
$$X_s(j\Omega) = X(e^{j\Omega T})$$

Overall System



Effective Frequency Response

$$H_{\mathrm{eff}}(j\Omega) = \begin{cases} H(e^{j\Omega T}), & |\Omega| < \frac{\pi}{T} \\ 0, & \text{Otherwise} \end{cases}$$

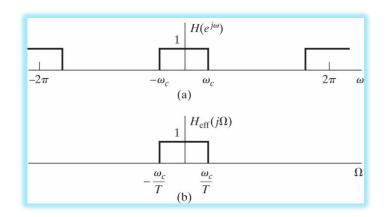
- Assumptions
 - $-x_c(t)$ is band-limited
 - $-\frac{2\pi}{T}$ satisfies the Nyquist rate

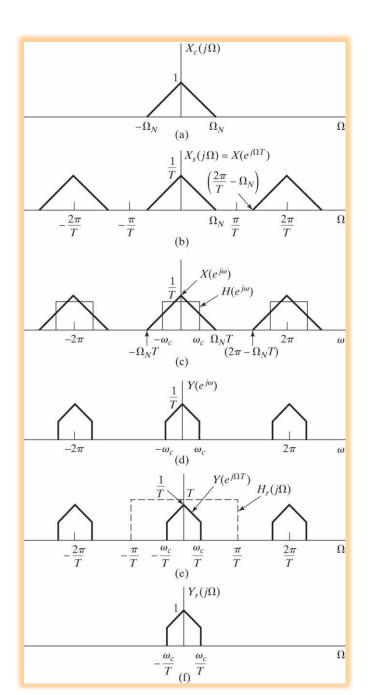
Relationship between x[n] and $x_s(t)$

$$X(e^{j\omega}) = X_s \left(j\frac{\omega}{T}\right),$$
$$X_s(j\Omega) = X(e^{j\Omega T})$$

Example 1

•
$$H(e^{j\omega}) = \begin{cases} 1, & |\omega| < \omega_c \\ 0, & \omega_c < |\omega| < \pi \end{cases}$$

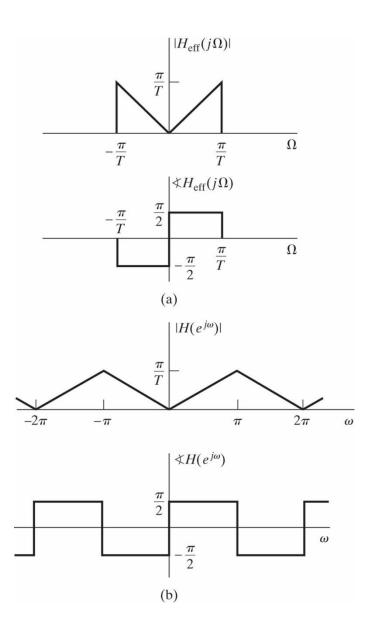




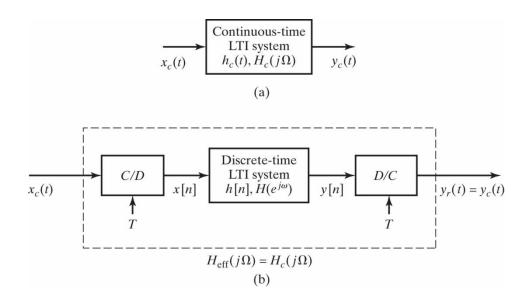
Example 2

•
$$y_c(t) = \frac{d}{dt} x_c(t)$$

$$\Rightarrow h[n] = \begin{cases} 0, & n = 0\\ \frac{(-1)^n}{nT}, & n \neq 0 \end{cases}$$



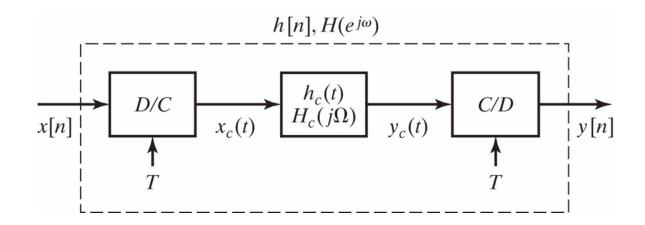
Impulse Invariance



- $h[n] = Th_c(nT)$
- Example
 - Ideal lowpass filter h[n] with cutoff frequency ω_c

CT Processing of DT Signals

CT Processing of DT Signals



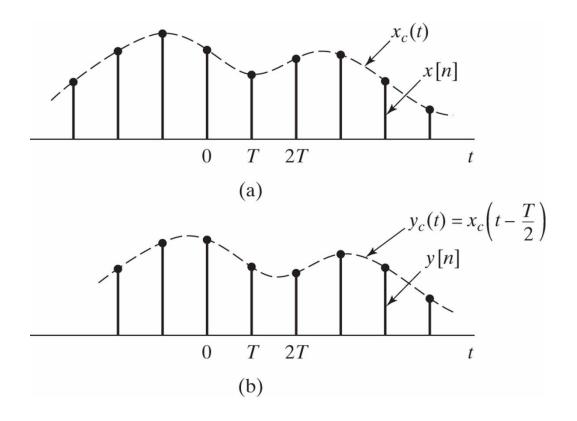
- It is rarely used, but provides a useful interpretation of some DT systems
- Main results

$$H(e^{j\omega}) = H_c(j\frac{\omega}{T}), \quad |\omega| < \pi$$
 $H_c(j\Omega) = H(e^{j\Omega T}), \quad |\Omega| < \frac{\pi}{T}.$

Example – Fractional Delay

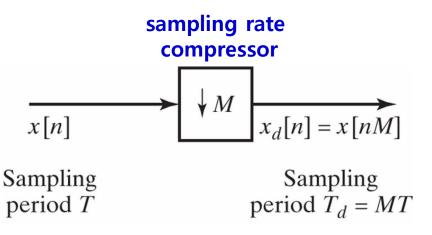
•
$$H(e^{j\omega}) = e^{-j\omega\Delta}, \ |\omega| < \pi$$

$$\Rightarrow h[n] = \frac{\sin \pi (n - \Delta)}{\pi (n - \Delta)}$$



Changing Sampling Rate

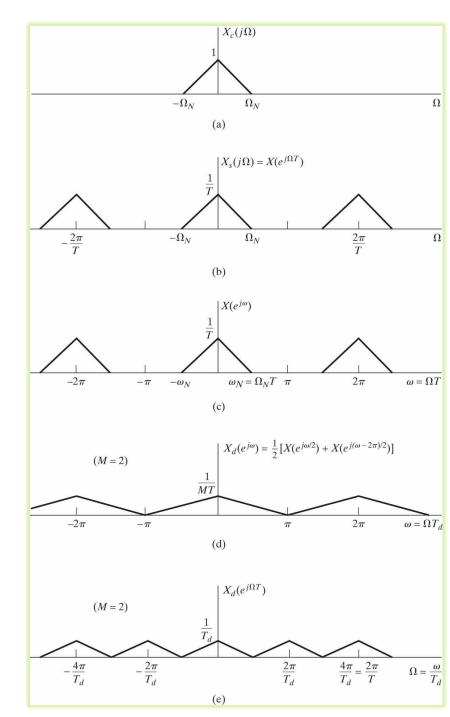
Reducing Sampling Rate by an Integer Factor *M*



• Time domain $x_d[n] = x[nM]$

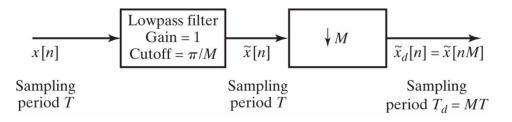
Frequency domain

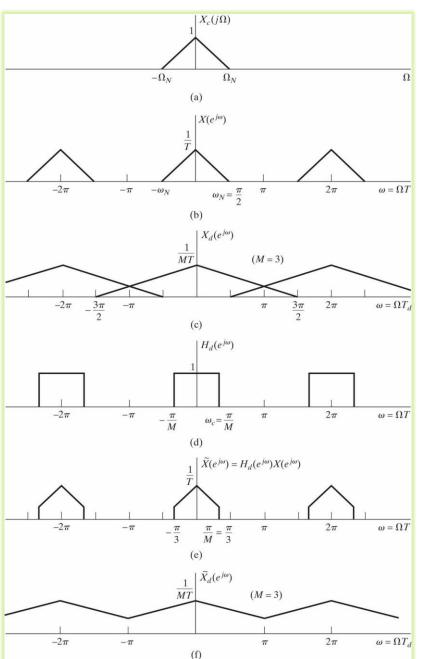
$$X_d(e^{j\omega}) = \frac{1}{M} \sum_{k=0}^{M-1} X(e^{j\left(\frac{\omega}{M} - \frac{2\pi k}{M}\right)})$$



Reducing Sampling Rate by an Integer Factor *M*

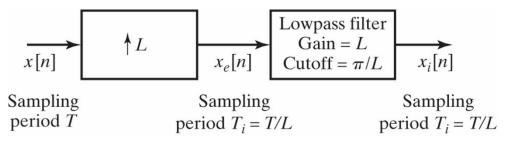
- To avoid aliasing, we need
 - $-X(e^{j\omega})=0$ if $\omega_N<|\omega|<\pi$
 - $-\omega_N < \frac{\pi}{M}$
- Anti-aliasing filter can be used





Increasing Sampling Rate by an Integer Factor *L*

sampling rate expander



Input and output

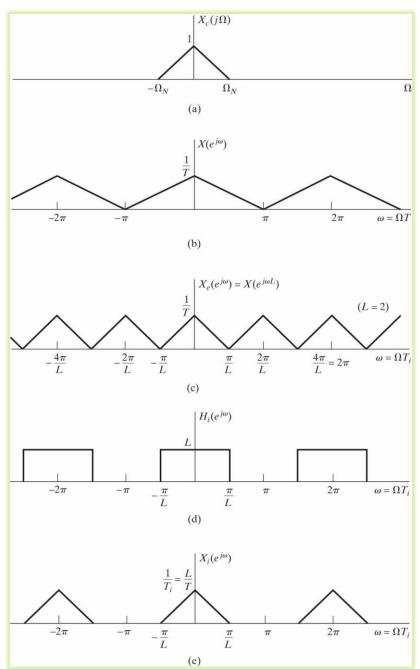
$$x[n] = x_c(nT)$$
$$x_i[n] = x_c\left(n\frac{T}{L}\right)$$

Intermediate signal

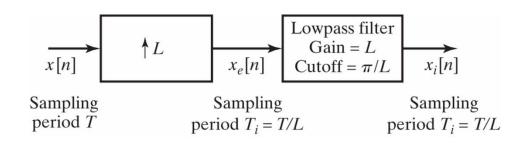
$$x_e[n] = \begin{cases} x[\frac{n}{L}] & \text{if } n \text{ is a multiple of } L \\ 0 & \text{otherwise} \end{cases}$$

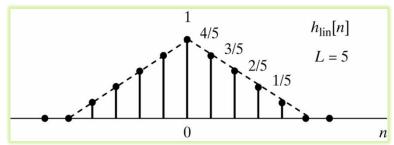
• Output in terms of input

$$x_i[n] = \sum_{k=-\infty}^{\infty} x[k] \frac{\sin \frac{\pi(n-kL)}{L}}{\frac{\pi(n-kL)}{L}}$$



Ideal and Linear Interpolation Filters



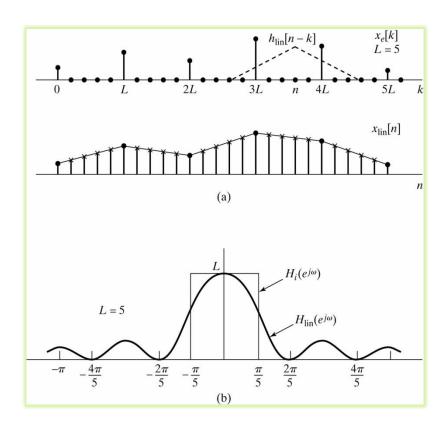


- $x_e[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-kL]$
- $x_i[n] = x_e[n] * h_i[n] = \sum_{k=-\infty}^{\infty} x[k] h_i[n-kL]$
- Ideal filter

$$h_i[n] = \frac{\sin\frac{\pi n}{L}}{\frac{\pi n}{L}}$$

Linear filter

$$h_{\text{lin}}[n] = \begin{cases} 1 - \frac{|n|}{L}, & -L \le n \le L \\ 0, & \text{otherwise} \end{cases}$$



Changing Sampling Rate by a Noninteger Factor

