Digital Signal Processing
Chap 8.
Discrete Fourier Transform

Chang-Su Kim

Definition

Definition

- N-point input signal $x[n], 0 \leq n \leq N-1$
- Discrete Fourier Transform (DFT)

$$
X[k]=\sum_{n=0}^{N-1} x[n] e^{-j 2 \pi k n / N}=\sum_{n=0}^{N-1} x[n] W_{N}^{k n}
$$

for each $0 \leq k \leq N-1$, where $W_{N}=e^{-j \frac{2 \pi}{N}}$

- Inverse Discrete Fourier Transform (IDFT)

$$
x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j 2 \pi k n / N}=\frac{1}{N} \sum_{k=0}^{N-1} X[k] W_{N}^{-k n}
$$

for each $0 \leq n \leq N-1$

DFT is a Lossless Representation

- $x[n] \stackrel{\mathrm{DFT}}{\Longrightarrow} X[k] \stackrel{\mathrm{IDFT}}{\Longrightarrow} y[n]$, then $y[n]=x[n]$

Examples

- Ex 1) Consider the length- N sequence

$$
x[n]=\left\{\begin{array}{cc}
1, & n=0 \\
0, & 1 \leq n \leq N-1
\end{array}\right.
$$

- Ex 2) Consider the length- N sequence

$$
g[n]=\cos \left(\frac{2 \pi r n}{N}\right)
$$

where r is an integer between 1 and $N-1$

Matrix Representation of DFT

Forward Transform

$$
\begin{aligned}
& \mathbf{X}_{N}=\mathbf{W}_{N} \mathbf{x}_{N} \text { or } \\
& {\left[\begin{array}{c}
X[0] \\
X[1] \\
X[2] \\
\vdots \\
X[N-1]
\end{array}\right]=\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & W_{N}^{1} & W_{N}^{2} & \cdots & W_{N}^{N-1} \\
1 & W_{N}^{2} & W_{N}^{4} & \cdots & W_{N}^{2(N-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & W_{N}^{N-1} & W_{N}^{2(N-1)} & \cdots & W_{N}^{(N-1)(N-1)}
\end{array}\right]\left[\begin{array}{c}
x[0] \\
x[1] \\
x[2] \\
\vdots \\
x[N-1]
\end{array}\right]}
\end{aligned}
$$

Matrix Representation of DFT

Inverse Transform
$\mathbf{x}_{N}=\mathbf{W}_{N}^{-1} \mathbf{X}_{N}$
or
$\left[\begin{array}{c}x[0] \\ x[1] \\ x[2] \\ \vdots \\ x[N-1]\end{array}\right]=\frac{1}{N}\left[\begin{array}{ccccc}1 & 1 & 1 & \cdots & 1 \\ 1 & W_{N}^{-1} & W_{N}^{-2} & \cdots & W_{N}^{-(N-1)} \\ 1 & W_{N}^{-2} & W_{N}^{-4} & \cdots & W_{N}^{-2(N-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & W_{N}^{-(N-1)} & W_{N}^{-2(N-1)} & \cdots & W_{N}^{-(N-1)(N-1)}\end{array}\right]\left[\begin{array}{c}X[0] \\ X[1] \\ X[2] \\ \vdots \\ X[N-1]\end{array}\right]$

- DFT can be interpreted as an invertible matrix
- The forward and inverse matrices are related by

$$
\mathbf{W}_{N}^{-1}=\frac{1}{N} \mathbf{W}_{N}^{*}
$$

Relationships between DFT and DTFT

DFT and DTFT

- Let $X\left(e^{j \omega}\right)$ denote the DTFT of $x[n], 0 \leq n \leq N-1$, then

$$
X[k]=\left.X\left(e^{j \omega}\right)\right|_{\omega=2 \pi k / N}
$$

- $X[k]$ is the set of frequency samples of the DFTF $X\left(e^{j \omega}\right)$ of the length- N sequence at N equally spaced frequencies
- Thus, $X[k]$ is also a frequency-domain representation of the sequence $x[n]$

DFT and DTFT

- DTFT of a finite-length sequence can be plotted

Figure 1 with high precision using DFT

- Ex) DTFT of $x[n]=$ $\cos \left(\frac{6 \pi n}{16}\right), \quad 0 \leq n \leq 15$

\gg for $i=1: 16, x(i)=\cos (6 * p i * i / 16)$; end
$\gg m a g=\operatorname{abs}(f f t(x, 1000))$;
$\gg p l o t(m a g)$

Circular Convolution Theorem

Extensions are Periodic

- The extension of x is periodic with period N

$$
x[n+N]=x[n]
$$

- Similarly, the extension of X is periodic with period N

$$
X[k+N]=X[k]
$$

Extensions are Periodic

- $x[n]$ should be understood as $x\left[(n)_{N}\right]$
- $X[k]$ should be understood as $X\left[(k)_{N}\right]$
- Hence, when dealing with finite-length sequences, "shift" to the right by n_{0} should be understood as the "circular shift."

$$
x\left[n-n_{0}\right]=x\left[\left(n-n_{0}\right)_{N}\right]
$$

Circular Shift

Circular Shift

- A circular shift of an N point sequence is equivalent to a linear shift of its periodic extension

Figure 7.2.1 Circular shift of a sequence.

Linear Convolution vs. Circular Convolution

- Convolution of two N-point sequences $g[n]$ and $h[n]$

$$
y[n]=g[n] * h[n]=\sum_{k=0}^{N-1} g[n-k] h[k]=\sum_{k=0}^{N-1} g[k] h[n-k]
$$

- Linear convolution
- $g[n]=h[n]=0 \quad$ for $n<0$ or $n \geq N$
- Circular convolution
- $g[n+m N]=g[n]$
- $h[n+m N]=h[n]$

Linear Convolution vs. Circular Convolution

N-Point Circular Convolution

$$
y[n]=g[n] \circledast h[n]=\sum_{k=0}^{N-1} g\left[(n-k)_{N}\right] h[k]=\sum_{k=0}^{N-1} g[k] h\left[(n-k)_{k}\right]
$$

- Ex) Circularly convolve $\{2,1,2,1\}$ and $\{1,2,3,4\}$

Using Circular Convolution to Obtain Linear Convolution

- Conditions
- $g[n]: \quad \boldsymbol{M}$-point sequence, $\quad g[n]=0$ for $n<0$ or $n>M-1$
- $h[n]: \quad N$-point sequence, $\quad h[n]=0$ for $n<0$ or $n>N-1$
- The linear convolution of $\boldsymbol{g}[\boldsymbol{n}]$ and $\boldsymbol{h}[\boldsymbol{n}]$ generates $(\boldsymbol{M}+\boldsymbol{N}-\mathbf{1})$-point sequence, $g[n] * h[n]=0$ for $n<0$ or $n>M+N-2$
- Procedures

1. Zero padding $g[n]$ and $h[n]$ to yield $(M+N-1)$-point sequence $g_{p}[n]$ and $h_{p}[n]$.
2. Obtain $(M+N-1)$-point circular convolution of $g_{p}[n]$ and $h_{p}[n]$
3. Result of Step 2 is equivalent to the linear convolution of $g[n]$ and $h[n]$

Circular Convolution Theorem

- $g[n] \circledast h[n] \stackrel{\mathrm{DFT}}{\Longleftrightarrow} G[k] H[k]$

Additional Properties of DFT

Real-Valued Sequence $x[n]$

- $X^{*}[k]=X[-k]=X[N-k]$

Time Reversal

- $x\left[(-n)_{N}\right]=x[N-n] \stackrel{\mathrm{DFT}}{\Longleftrightarrow} X\left[(-k)_{N}\right]=X[N-k]$

Figure 7.2.3 Time reversal of a sequence.

Circular Shift

- $x\left[(n-l)_{N}\right] \stackrel{\mathrm{DFT}}{\Longleftrightarrow} X[k] W_{N}^{k l}$
- $x[n] W_{N}^{-n l} \stackrel{\mathrm{DFT}}{\Longleftrightarrow} X\left[(k-l)_{N}\right]$

Multiplication of Two Sequences

- $x[n] y[n] \stackrel{\mathrm{DFT}}{\Longleftrightarrow} \frac{1}{N} X[k] \circledast Y[k]$

Parseval's Theorem

- $\sum_{n=1}^{N-1}|x[n]|^{2}=\frac{1}{N} \sum_{k=1}^{N-1}|X[k]|^{2}$

