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Edge Detection



Edges

• Where the image 

values exhibit sharp 

variations

• Edges can be 
measured by
– 1st order derivatives

• Determine the gradients

• Perform non-maximal 
suppression

• Threshold

– 2nd order derivatives
• Find zero crossings in 

2nd derivatives using  
Laplacian



First-order derivative filters (1D)

• Sharp changes correspond to peaks of the 

first-derivative of the input signal
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Image gradient

• 2D gradient of an image:

• The gradient magnitude (edge strength):

• The gradient direction:
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Image gradient

• Horizontal change:

• Vertical change: 
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Image gradient

• General directions:

• Gradient direction is perpendicular to edge
– It represents the direction for the maximum change

• Gradient magnitude measures edge strength.
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Discrete approximation of derivatives

• 1D derivative

• Discrete approximations
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Effects of noises

• Consider an 1-D signal

• Can you detect the edge?
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Noise suppression: pre-smoothing

Noise Filter
(Smoothing)

Edge
Detection
(Derivative)

𝐼(𝑥, 𝑦) 𝐸(𝑥, 𝑦)

( , ) ( , )*( ( , )* ( , ))

( ( , )* ( , ))* ( , )

( , ) ( ( , )* ( , ))

E x y D x y S x y I x y

D x y S x y I x y

S x y D x y I x y





 



Noise smoothing and edge detection

• Prewitt edge detector:

– Vertical mask 
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Noise smoothing and edge detection
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• Prewitt edge detector:

– Horizontal mask 
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Prewitt Edge Detector

Result of Prewitt operator (threshold = 100)

Original image
|𝐸| > threshold
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Sobel Edge Detector

• Sobel Masks:

– Gives more weight to the 4-neighbors
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Sobel Edge Detector

Result of Sobel operator (threshold = 100)

Original image
|𝐸| > threshold
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Gaussian Smoothing

• Consider smoothing with Gaussian kernel
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Derivative of Gaussian

• Note that                         and

• This saves us one step 
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2D edge detection filters

Gaussian derivative of Gaussian (DOG)
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Second-order derivative filters (1D)

• Peaks of the first-derivative of the input signal 

correspond to “zero-crossings” of the second-

derivative.
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Second-order derivative filters (1D)

• The condition: 𝑓′′(𝑥) = 0 is not enough for 

edgeness

– 𝑓(𝑥) = 𝑐 has 𝑓′′(𝑥) = 0, but there is no edge

• We need check whether |𝑓′ 𝑥 | is big 

enough



2D Laplacian Operator
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2D Laplacian Operator

• 2𝐼(𝑥, 𝑦) is a scalar (isotropic)

– Pros: It can be found using a SINGLE 

mask

– Cons: The orientation information is 

lost

• 2𝐼(𝑥, 𝑦) is the sum of second-

order derivatives

– But taking derivatives increases noises

– Very sensitive to noises

• It is always combined with a 

smoothing (Gaussian) operation



Laplacian of Gaussian (LOG)
• In 1D, consider

• Edge is the zero-crossing of the bottom graph
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Laplacian of Gaussian (LOG)

• 𝑂(𝑥, 𝑦) =

2(𝐼(𝑥, 𝑦) ∗ 𝐺(𝑥, 𝑦))

1. Smoothing with a 
Gaussian filter

2. Finding zero-
crossings with a 
Laplacian filter

• Using linearity:
– 𝑂 𝑥, 𝑦 =

2𝐺 𝑥, 𝑦 ∗ 𝐼(𝑥, 𝑦)

– The combined  filter is 
called LOG
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LOG Filter
• Mexican hat operator (inverted LoG) 

1-D 2-D

 = 2

 = 3



LOG Filter 

Original 
image
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Canny Edge Detector

• Canny Edge Detector

– Uses a mathematical model of the edge and 
noises

– Sets a performance criterion

– Synthesizes the optimal filter

• Experiments consistently show that it 
performs very well 

• Widely used by C.V. practitioners for 25 years

• J. Canny, “A Computational Approach to Edge Detection”, IEEE 
Transactions on Pattern Analysis and Machine Intelligence, Vol 8, No. 6, 

Nov 1986.



Edge & Noise Model (1D)

• An ideal edge can be modeled as an step

• Additive, white Gaussian noise

A



Performance Criteria

• Good detection

– The filter must have a strong response at the 
edge location (𝑥 = 0)

• Good localization

– The filter response must be maximum very close 
to 𝑥 = 0

• Low false positives

– There should be only one maximum in a 
reasonable neighborhood of 𝑥 = 0



Optimal Filter

• Canny found a linear, continuous filter that 

maximized the three given criteria

• There is no close-form solution for the 

optimal filter

• However, it looks very similar to the 

derivative of Gaussian (DoG)



Canny Edge Detector

• Three procedures

– Gradient computation

– Nonmaximum suppression

– Thresholding



Procedure: Gradient Computation

• Given an input image 𝐼 and a zero mean 

Gaussian filter 𝐺 (std = 𝜎)

1. 𝐽 = 𝐼 ∗ 𝐺 (smoothing)

2. For each pixel (𝑖, 𝑗) (Gradient computation)

• Compute the image gradient 

𝐽(𝑖, 𝑗) = (𝐽𝑥(𝑖, 𝑗), 𝐽𝑦(𝑖, 𝑗))

• Estimate edge strength 

𝐸𝑠(𝑖, 𝑗) = 𝐽𝑥
2 𝑖, 𝑗 + 𝐽𝑦

2 𝑖, 𝑗
1/2

• Estimate edge orientation 

𝐸𝑜 𝑖, 𝑗 = arctan
𝐽𝑦 𝑖, 𝑗

𝐽𝑥 𝑖, 𝑗

• The output are images 𝐸𝑠 and 𝐸𝑜



Nonmaximum Suppression

• 𝐸𝑠 has the magnitudes of the smoothed 

gradient.

– 𝜎 determines the amount of smoothing

• 𝐸𝑠 has large values at edges

• However, 𝐸𝑠 is large along thick trail.  

how do we identify the significant 

points?



NONMAXIMUM SUPRESSION

• We wish to mark points along the curve where the magnitude is 
biggest.

• We can do this by looking for the maximum along a slice normal 
to the curve (nonmaximum suppression).  



• Non-maximum suppression:

 At q, we have a maximum if the value is larger than those 
at both p and at r. 

 Interpolate to get these value

NONMAXIMUM SUPRESSION



Procedure: Nonmaximum Suppression

• The inputs are 𝐸𝑠 & 𝐸𝑜

• Consider 4 directions 𝐷 = {0°, 45°, 90°, 135°}

• For each pixel (𝑖, 𝑗) do:

1. Find the direction 𝑑𝐷 s.t. 𝑑  𝐸𝑜(𝑖, 𝑗) (normal to the edge)

2. If 𝐸𝑠(𝑖, 𝑗) is smaller than at least one of its neighbor along 𝑑

𝐼𝑁(𝑖, 𝑗) = 0

Otherwise, 

𝐼𝑁(𝑖, 𝑗) = 𝐸𝑠(𝑖, 𝑗)

• The output is the thinned edge image 𝐼𝑁



Procedure: Thresholding

• Edges are found by thresholding the output 

of NONMAX_SUPRESSION

• If the threshold is too high:

– Very few (none) edges 

• Many false negatives, many gaps

• If the threshold is too low:

– Too many (all pixels) edges

• Many false positives, many extra edges



Results

original image Gradients

Nonmaximum
suppression and 

thresholding



Canny with Canny with original 

• controls the scale of the features

 large     detects large scale edges only

 small     detects fine features as well

Results



fine scale, high threshold

coarse scale, high threshold coarse scale, low threshold


