KECE471 Computer Vision

Edge Detection

Chang-Su Kim

Chapter 8, Computer Vision by Forsyth and Ponce
Note: Many contents were extracted from the lecture notes of Prof. Kyoung Mu Lee.
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* Where the image
values exhibit sharp
variations

» Edges can be
measured by

— 1st order derivatives
* Determine the gradients

e Perform non—maximal
suppression

* Threshold

— 2nd order derivatives

* Find zero qrossings In
2"d derivatives using
Laplacian



First-order derivative filters (1D)

» Sharp changes correspond to peaks of the
first-derivative of the input signal
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Image gradient
« 2D gradient of an image:
Vi =(|X,|y)=[ﬂ,ﬂj
X

» The gradient magnitude (edge strength):

W1l= 1+

* The gradient direction:

|
6 = tan 1(|—yj



Image gradient

* Horizontal change:

 Vertical change:




Image gradient

 General directions:
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« Gradient direction is perpendicular to edge
— It represents the direction for the maximum change

« Gradient magnitude measures edge strength.




Discrete approximation of derivatives

1D derivative

lim Tx+Ax)— T(x) -forward
AX—0 AX
At _ ) fjm LI TX=A%) o heward
dX AX—0 AX .
lim F(x+AX)— T(X-AX) -central
\Ax—>0 2 AX
* Discrete approximations
y f(x+1)— f(x) 111
d(x);< f0-f(x-0) [T
X
f(x+1)— f(x-1) T
2




Effects of noises

» Consider an 1-D signal
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* Can you detect the edge?



Noise suppression: pre-smoothing

I(x,y)

Noise Filter
(Smoothing)

Edge
Detection
(Derivative)

E(X,y) =D(X,y)*(S(x,y)* 1(x,y))
=(D(X,y)*S(x,y))*1(X,y)
=S(X,y)*(D(x,y)*1(x,y))

E(x,y)



Noise smoothing and edge detection

 Prewitt edge detector:
— Vertical mask
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Noise smoothing and edge detection

 Prewitt edge detector:
— Horizontal mask
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Prewitt Edge Detector

|E| > threshold
Original image

Result of Prewitt operator (threshold = 100)



Sobel Edge Detector

 Sobel Masks:

— Gives more weight to the 4-neighbors




Sobel Edge Detector

Original image E, |E| > threshold
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Result of Sobel operator (threshold = 100)



Gaussian Smoothing

* Consider smoothing with Gaussian kernel

Sigma = 50
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Derivative of Gaussian

X

* Note that %(G*l){diGj*l and e-(x):_%eziz
* This saves us one step

Sigma = 50
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2D edge detection filters
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Gaussian derivative of Gaussian (DOG)
Ly
G(x,y)=-—¢e
2o

VG(x,y)=(G,.G,)




Second-order derivative filters (1D)

 Peaks of the first-derivative of the input signal
correspond to “zero-crossings” of the second-

derivative.
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Second-order derivative filters (1D)

» The condition: f"(x) = 0 is not enough for
edgeness

— f(x) = chas f"(x) = 0, but there is no edge

* We need check whether |f'(x)] is big
enough



2D Laplacian Operator

-
Negative definition 010 111
} :_ 141 1]-8

2 . f_')"f ()- f

V f o f;')'.l‘z + i’)y:} , 0 1 O 1 1

O f o N

Sy fle+1,y) + flxr—1y) —2f(x,y),

ar-

0? - o B |

i’)’{ji = fle.y+ 1)+ fle,y—1) — Q,f(;l‘, Y),

Vif = fle+lLy+fle—Ly + fry+ D)+ flr,y—1) —4f(z,y).
Positive definition
Vif = —[fle+Ly) +flz— Ly + fle,y+ 1)+ fla,y — D] + 4f (. y).

Diagonal derivatives also can be included.



2D Laplacian Operator

Sz, y)
* V2I(x,y) is a scalar (isotropic)

— Pros: It can be found using a SINGLE
mask

— Cons: The orientation information is
lost

* V?2I(x,y) is the sum of second-
order derivatives
— But taking derivatives increases noises
— Very sensitive to noises

* |t is always combined with a
smoothing (Gaussian) operation

V2f[;1; yj



Laplacian of Gaussian (LOG)

* In 1D, consider 62(G>x<|)=(62c3j>x<|

Signal
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» Edge is the zero-crossing of the bottom graph



Laplacian of Gaussian (LOG)

* O(xy) =
V(I (x,y) * G(x,Y))
1. Smoothing with a
Gaussian filter

2. Finding zero-
crossings with a
Laplacian filter

* Using linearity:
- O(X, )’) —
VaG(x,y) *1(x,y)
— The combined filter is
called LOG

G(x,y)=

ViG(X,y) =
(X,y) .

X+ y°
exp| —
o5




LOG Filter

* Mexican hat operator (inverted LoG
1-D 2-D
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LOG Filter
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Canny Edge Detector

» Canny Edge Detector
— Uses a mathematical model of the edge and
noises
— Sets a performance criterion

— Synthesizes the optimal filter

» Experiments consistently show that it
performs very well

« Widely used by C.V. practitioners for 25 years

J. Canny, "A Computational Approach to Edge Detection”, IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol 8, No. 6,

Nov 1986.



Edge & Noise Model (1D)

* An ideal edge can be modeled as an step

A

 Additive, white Gaussian noise



Performance Criteria

 Good detection

— The filter must have a strong response at the
edge location (x = 0)

 Good localization

— The filter response must be maximum very close
tox =0

« Low false positives

— There should be only one maximum in a
reasonable neighborhood of x = 0



Optimal Filter

« Canny found a linear, continuous filter that
maximized the three given criteria

 There is no close-form solution for the
optimal filter

« However, it looks very similar to the
derivative of Gaussian (DoGQG)



Canny Edge Detector

* Three procedures
— Gradient computation
— Nonmaximum suppression
— Thresholding



Procedure: Gradient Computation

* Given an input image I and a zero mean
Gaussian filter G (std = o)

1 J=1%xG (smoothing)

2. For each pixel (i,j) (Gradient computation)

« Compute the image gradient

JG@.j) = Ux(@)) ]y (01))
* Estimate edge strength

. . 2 . . 2 . x 1/2

E,G)) = (J2)) +J3G))
 Estimate edge orientation
Jy(@,7)
E,g, j) = arctan (]x(i,j)>

* The output are images E; and E|,




Nonmaximum Suppression

» E. has the magnitudes of the smoothed
gradient.

— o determines the amount of smoothing
» E has large values at edges

* However, E; Is large along thick trail.
now do we identify the significant
points?




NONMAXIMUM SUPRESSION

« We wish to mark points along the curve where the magnitude is
biggest.

- We can do this by looking for the maximum along a slice normal
to the curve (nonmaximum suppression).



NONMAXIMUM SUPRESSION

«  Non-maximum suppression:

v At g, we have a maximum if the value is larger than those
at both p and at r.

v Interpolate to get these value



Procedure: Nonmaximum Suppression

The inputs are E; & E,,
Consider 4 directions D = {0°,45°,90°,135°}
For each pixel (i,j) do:
1. Find the direction deD s.t. d 2 E,(i,j) (nhormal to the edge)

2. It E(i,j) is smaller than at least one of its neighbor along d
IN(i,j) =0
Otherwise,
Iy(i,j) = Es(i,))

The output is the thinned edge image I,



Procedure: Thresholding

» Edges are found by thresholding the output
of NONMAX_SUPRESSION

* If the threshold is too high:

— Very few (none) edges

« Many false negatives, many gaps

e |f the threshold is too low:

— Too many (all pixels) edges

« Many false positives, many extra edges



Results

Nonmaximum
suppression and

original image Gradients thresholding
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original Canny with 0 = 1

- ¢ controls the scale of the features
v large o detects large scale edges only
v small o detects fine features as well

Canny with 0 = 2



coarse scale, high threshold coarse scale, low threshold



