
KECE471 Computer Vision

Edge Detection

Chang-Su Kim

Chapter 8, Computer Vision by Forsyth and Ponce
Note: Many contents were extracted from the lecture notes of Prof. Kyoung Mu Lee.

Edge Detection

Edges

• Where the image

values exhibit sharp

variations

• Edges can be
measured by
– 1st order derivatives

• Determine the gradients

• Perform non-maximal
suppression

• Threshold

– 2nd order derivatives
• Find zero crossings in

2nd derivatives using
Laplacian

First-order derivative filters (1D)

• Sharp changes correspond to peaks of the

first-derivative of the input signal

f(x)
f ’(x)

xx

Image gradient

• 2D gradient of an image:

• The gradient magnitude (edge strength):

• The gradient direction:

 ,),(

















y

I

x

I
III yx

22

yx III 











 

x

y

I

I
1tan

Image gradient

• Horizontal change:

• Vertical change:

)0,(, k
y

I

x

I


















Change

No
Change

),0(, k
y

I

x

I


















No
Change

Change

Image gradient

• General directions:

• Gradient direction is perpendicular to edge
– It represents the direction for the maximum change

• Gradient magnitude measures edge strength.

1 2, (,)
I I

k k
x y

  
 

  

Discrete approximation of derivatives

• 1D derivative

• Discrete approximations
































central :
2

)()(
lim

backward :
)()(

lim

forward :
)()(

lim

)(

0

0

0

x

xxfxxf
x

xxfxf
x

xfxxf

dx

xdf

x

x

x

(1) ()
()

() (1)

(1) (1)

2

f x f x
df x

f x f x
dx

f x f x


  


  
   



symmetric

-1 1

-1 1

-1 0 1

Effects of noises

• Consider an 1-D signal

• Can you detect the edge?

)(xI

dx

xdI)(

Noise suppression: pre-smoothing

Noise Filter
(Smoothing)

Edge
Detection
(Derivative)

𝐼(𝑥, 𝑦) 𝐸(𝑥, 𝑦)

(,) (,)*((,)* (,))

((,)* (,))* (,)

(,) ((,)* (,))

E x y D x y S x y I x y

D x y S x y I x y

S x y D x y I x y





 

Noise smoothing and edge detection

• Prewitt edge detector:

– Vertical mask

-1 0 1

-1 0 1

-1 0 1

Vertical Edge Detection

N
o
is
e
 S

m
o
o
th

in
g

x





Noise smoothing and edge detection

-1 -1 -1

0 0 0

1 1 1

Noise Smoothing H
o
ri
zo

n
ta

l
E
d
g
e
 D

e
te

ct
io

n

• Prewitt edge detector:

– Horizontal mask

y





Prewitt Edge Detector

Result of Prewitt operator (threshold = 100)

Original image
|𝐸| > threshold

|𝐸|

𝐸𝑥

𝐸
𝑦

22

yx EEE 

Sobel Edge Detector

• Sobel Masks:

– Gives more weight to the 4-neighbors

-1 0 1

-2 0 2

-1 0 1

-1 -2 -1

0 0 0

1 2 1

Sobel Edge Detector

Result of Sobel operator (threshold = 100)

Original image
|𝐸| > threshold

|𝐸|

𝐸𝑥

𝐸
𝑦

Gaussian Smoothing

• Consider smoothing with Gaussian kernel

I

IG

 IG
dx

d


2

2

2)(

x

exG




Derivative of Gaussian

• Note that and

• This saves us one step

  IG
dx

d
IG

dx

d








 2

2

2
2

)(' 



x

e
x

xG




I

IG
dx

d









G
dx

d

2D edge detection filters

Gaussian derivative of Gaussian (DOG)

2

22

2
22

1
),(



yx

eyxG




  yx GGyxG ,),(

Second-order derivative filters (1D)

• Peaks of the first-derivative of the input signal

correspond to “zero-crossings” of the second-

derivative.

𝑓(𝑥) 𝑓′(𝑥)

x

𝑓′′(𝑥)

Second-order derivative filters (1D)

• The condition: 𝑓′′(𝑥) = 0 is not enough for

edgeness

– 𝑓(𝑥) = 𝑐 has 𝑓′′(𝑥) = 0, but there is no edge

• We need check whether |𝑓′ 𝑥 | is big

enough

2D Laplacian Operator

1 1 1

1 -8 1

1 1 1

0 1 0

1 -4 1

0 1 0

2D Laplacian Operator

• 2𝐼(𝑥, 𝑦) is a scalar (isotropic)

– Pros: It can be found using a SINGLE

mask

– Cons: The orientation information is

lost

• 2𝐼(𝑥, 𝑦) is the sum of second-

order derivatives

– But taking derivatives increases noises

– Very sensitive to noises

• It is always combined with a

smoothing (Gaussian) operation

Laplacian of Gaussian (LOG)
• In 1D, consider

• Edge is the zero-crossing of the bottom graph

  IG
x

IG
x


















2

2

2

2

I

IG
x













2

2

G
x2

2





Laplacian of Gaussian (LOG)

• 𝑂(𝑥, 𝑦) =

2(𝐼(𝑥, 𝑦) ∗ 𝐺(𝑥, 𝑦))

1. Smoothing with a
Gaussian filter

2. Finding zero-
crossings with a
Laplacian filter

• Using linearity:
– 𝑂 𝑥, 𝑦 =

2𝐺 𝑥, 𝑦 ∗ 𝐼(𝑥, 𝑦)

– The combined filter is
called LOG

2 2

2

2 2
2

2 2

2 2 2 2

4 2 2

2 2

4 2 2

(,) exp

2

(,)

 2
exp

2

2
exp

2

()

= ()

x y
G x y

G G
G x y

x y

x y x y

r r



  

  

 
  

 

 
  

 

  
   
 

 
  

 

LOG Filter
• Mexican hat operator (inverted LoG)

1-D 2-D

 = 2

 = 3

LOG Filter

Original
image

 = 2.0

 = 4.0  = 6.0

Canny Edge Detector

• Canny Edge Detector

– Uses a mathematical model of the edge and
noises

– Sets a performance criterion

– Synthesizes the optimal filter

• Experiments consistently show that it
performs very well

• Widely used by C.V. practitioners for 25 years

• J. Canny, “A Computational Approach to Edge Detection”, IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol 8, No. 6,

Nov 1986.

Edge & Noise Model (1D)

• An ideal edge can be modeled as an step

• Additive, white Gaussian noise

A

Performance Criteria

• Good detection

– The filter must have a strong response at the
edge location (𝑥 = 0)

• Good localization

– The filter response must be maximum very close
to 𝑥 = 0

• Low false positives

– There should be only one maximum in a
reasonable neighborhood of 𝑥 = 0

Optimal Filter

• Canny found a linear, continuous filter that

maximized the three given criteria

• There is no close-form solution for the

optimal filter

• However, it looks very similar to the

derivative of Gaussian (DoG)

Canny Edge Detector

• Three procedures

– Gradient computation

– Nonmaximum suppression

– Thresholding

Procedure: Gradient Computation

• Given an input image 𝐼 and a zero mean

Gaussian filter 𝐺 (std = 𝜎)

1. 𝐽 = 𝐼 ∗ 𝐺 (smoothing)

2. For each pixel (𝑖, 𝑗) (Gradient computation)

• Compute the image gradient

𝐽(𝑖, 𝑗) = (𝐽𝑥(𝑖, 𝑗), 𝐽𝑦(𝑖, 𝑗))

• Estimate edge strength

𝐸𝑠(𝑖, 𝑗) = 𝐽𝑥
2 𝑖, 𝑗 + 𝐽𝑦

2 𝑖, 𝑗
1/2

• Estimate edge orientation

𝐸𝑜 𝑖, 𝑗 = arctan
𝐽𝑦 𝑖, 𝑗

𝐽𝑥 𝑖, 𝑗

• The output are images 𝐸𝑠 and 𝐸𝑜

Nonmaximum Suppression

• 𝐸𝑠 has the magnitudes of the smoothed

gradient.

– 𝜎 determines the amount of smoothing

• 𝐸𝑠 has large values at edges

• However, 𝐸𝑠 is large along thick trail.

how do we identify the significant

points?

NONMAXIMUM SUPRESSION

• We wish to mark points along the curve where the magnitude is
biggest.

• We can do this by looking for the maximum along a slice normal
to the curve (nonmaximum suppression).

• Non-maximum suppression:

 At q, we have a maximum if the value is larger than those
at both p and at r.

 Interpolate to get these value

NONMAXIMUM SUPRESSION

Procedure: Nonmaximum Suppression

• The inputs are 𝐸𝑠 & 𝐸𝑜

• Consider 4 directions 𝐷 = {0°, 45°, 90°, 135°}

• For each pixel (𝑖, 𝑗) do:

1. Find the direction 𝑑𝐷 s.t. 𝑑  𝐸𝑜(𝑖, 𝑗) (normal to the edge)

2. If 𝐸𝑠(𝑖, 𝑗) is smaller than at least one of its neighbor along 𝑑

𝐼𝑁(𝑖, 𝑗) = 0

Otherwise,

𝐼𝑁(𝑖, 𝑗) = 𝐸𝑠(𝑖, 𝑗)

• The output is the thinned edge image 𝐼𝑁

Procedure: Thresholding

• Edges are found by thresholding the output

of NONMAX_SUPRESSION

• If the threshold is too high:

– Very few (none) edges

• Many false negatives, many gaps

• If the threshold is too low:

– Too many (all pixels) edges

• Many false positives, many extra edges

Results

original image Gradients

Nonmaximum
suppression and

thresholding

Canny with Canny with original

• controls the scale of the features

 large detects large scale edges only

 small detects fine features as well

Results

fine scale, high threshold

coarse scale, high threshold coarse scale, low threshold

