KECE471 Computer Vision

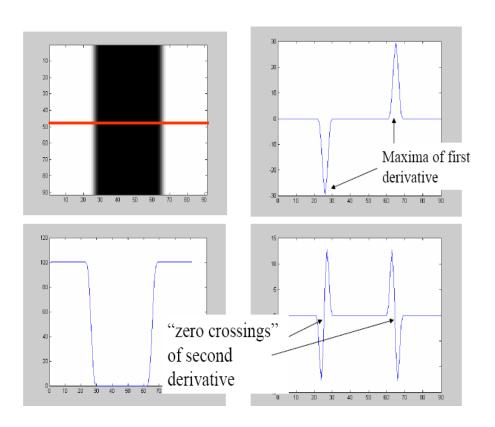
Edge Detection

Chang-Su Kim

Chapter 8, Computer Vision by Forsyth and Ponce Note: Many contents were extracted from the lecture notes of Prof. Kyoung Mu Lee.

Edge Detection

Edges



- Where the image values exhibit sharp variations
- Edges can be measured by
 - 1st order derivatives
 - Determine the gradients
 - Perform non-maximal suppression
 - Threshold
 - 2nd order derivatives
 - Find zero crossings in 2nd derivatives using Laplacian

First-order derivative filters (1D)

 Sharp changes correspond to peaks of the first-derivative of the input signal

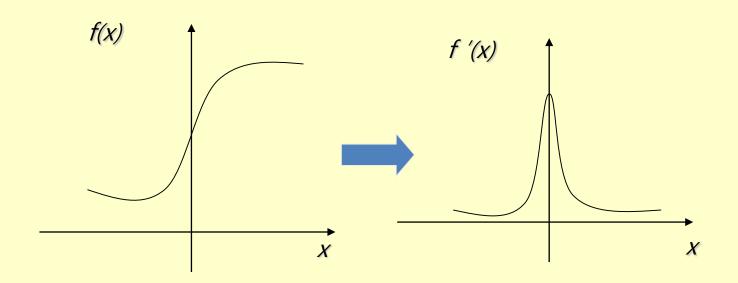


Image gradient

2D gradient of an image:

$$\nabla I = (I_x, I_y) = \left(\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y}\right)$$

The gradient magnitude (edge strength):

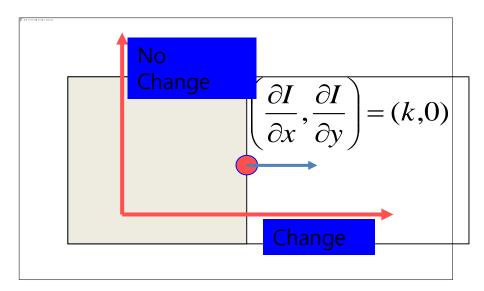
$$\|\nabla I\| = \sqrt{I_x^2 + I_y^2}$$

The gradient direction:

$$\theta = \tan^{-1} \left(\frac{I_y}{I_x} \right)$$

Image gradient

Horizontal change:



Vertical change:

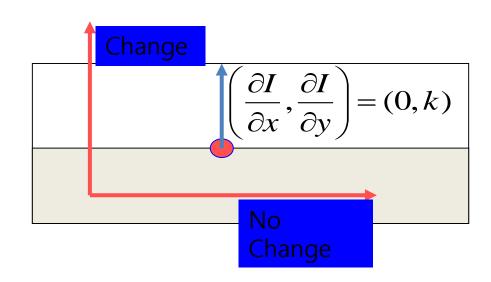
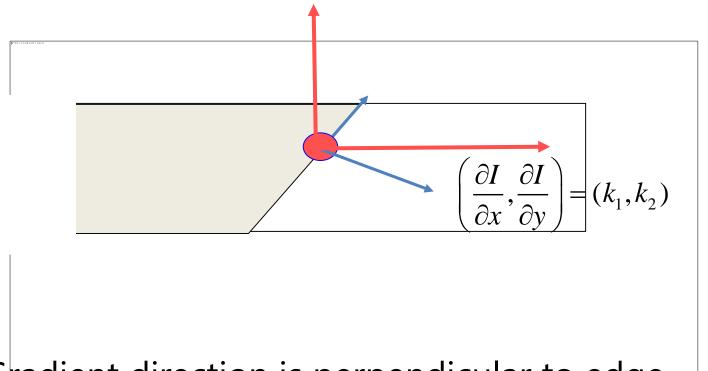


Image gradient

General directions:



- Gradient direction is perpendicular to edge
 It represents the direction for the maximum change
- Gradient magnitude measures edge strength.

Discrete approximation of derivatives

1D derivative

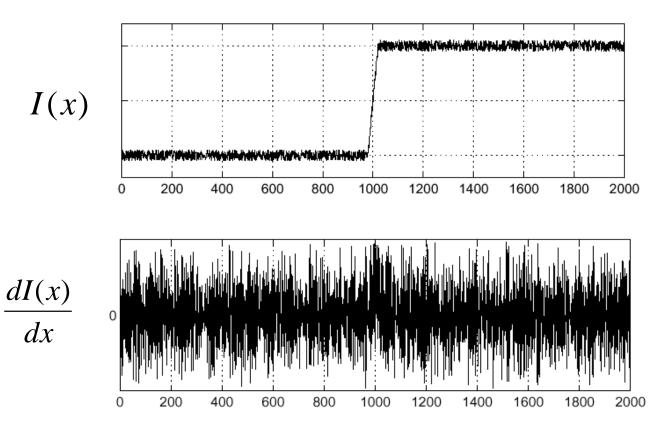
$$\frac{df(x)}{dx} = \begin{cases}
\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} & : \text{forward} \\
\lim_{\Delta x \to 0} \frac{f(x) - f(x - \Delta x)}{\Delta x} & : \text{backward} \\
\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x - \Delta x)}{2\Delta x} & : \text{central}
\end{cases}$$

Discrete approximations

$$\frac{df(x)}{dx} \cong \begin{cases} f(x+1) - f(x) & -1 & 1 \\ f(x) - f(x-1) & -1 & 1 \\ \underline{f(x+1) - f(x-1)} & 2 & -1 & 0 & 1 \end{cases}$$
 symmetric

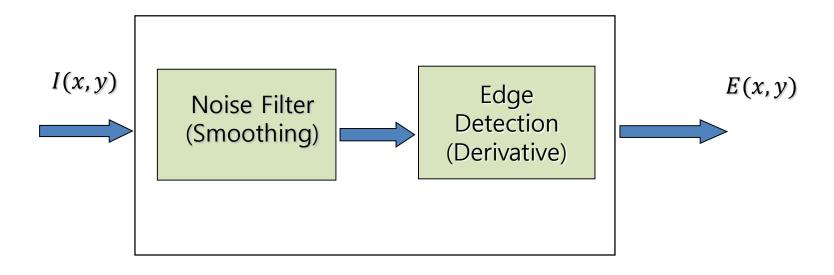
Effects of noises

Consider an 1-D signal



Can you detect the edge?

Noise suppression: pre-smoothing



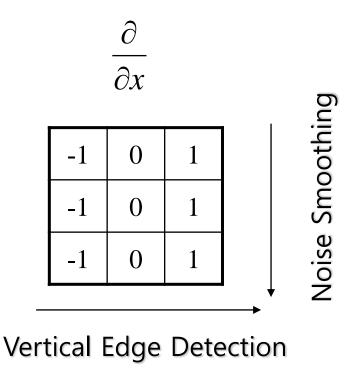
$$E(x, y) = D(x, y) * (S(x, y) * I(x, y))$$

$$= (D(x, y) * S(x, y)) * I(x, y)$$

$$= S(x, y) * (D(x, y) * I(x, y))$$

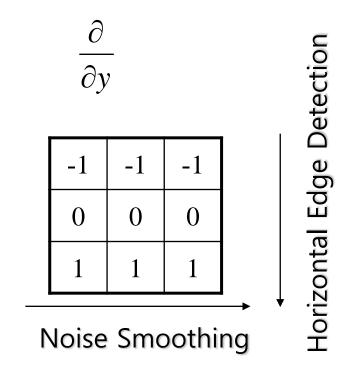
Noise smoothing and edge detection

- Prewitt edge detector:
 - Vertical mask

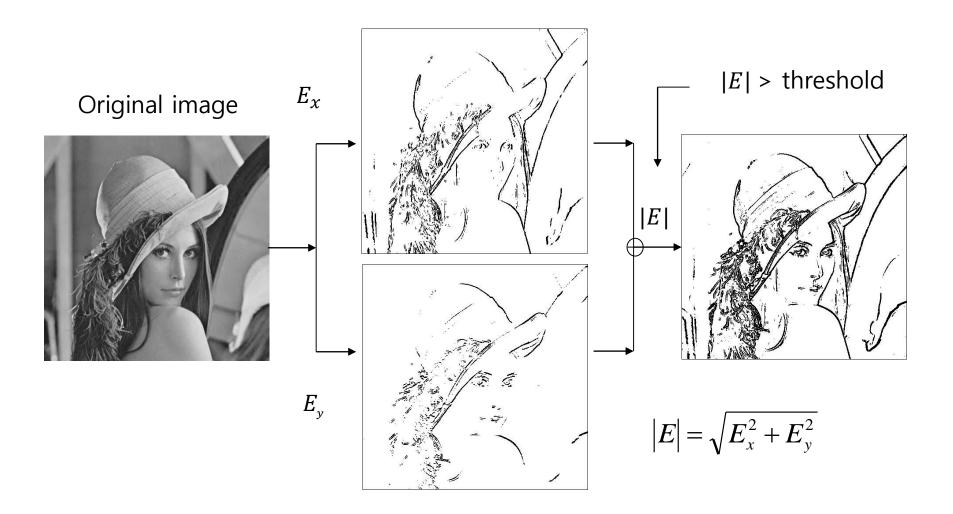


Noise smoothing and edge detection

- Prewitt edge detector:
 - Horizontal mask



Prewitt Edge Detector



Result of Prewitt operator (threshold = 100)

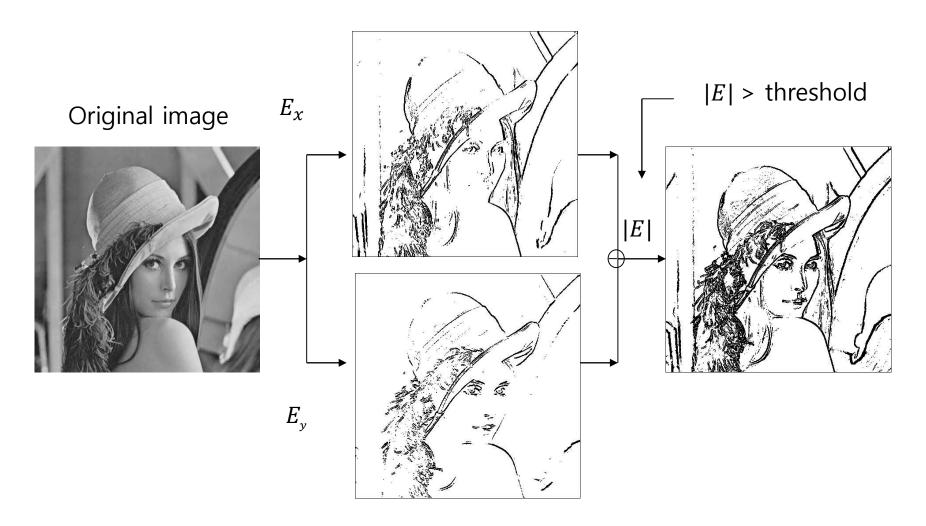
Sobel Edge Detector

- Sobel Masks:
 - Gives more weight to the 4-neighbors

-1	0	1
-2	0	2
-1	0	1

-1	-2	-1
0	0	0
1	2	1

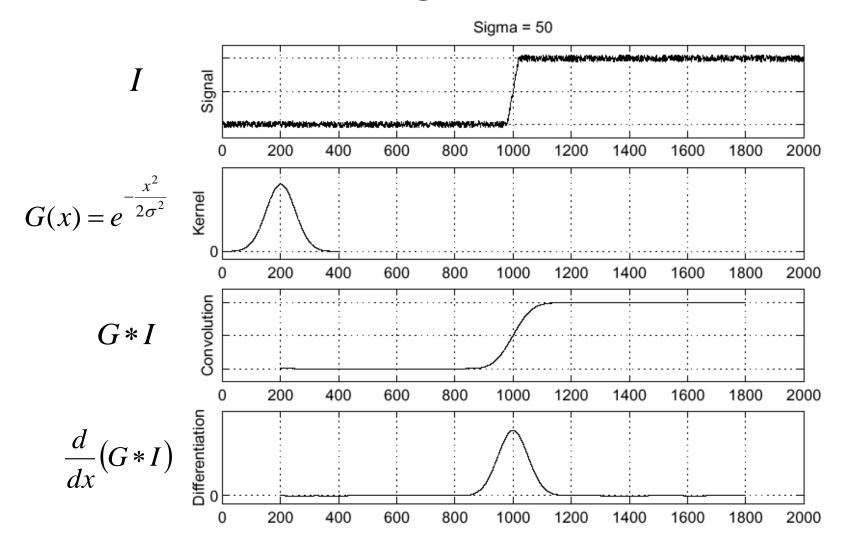
Sobel Edge Detector



Result of Sobel operator (threshold = 100)

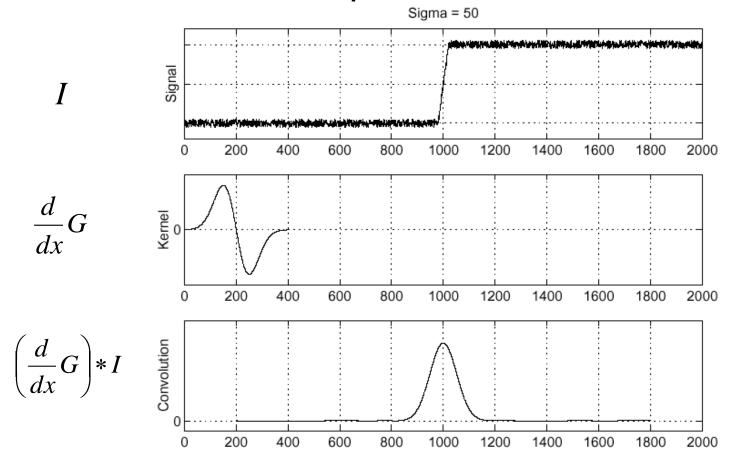
Gaussian Smoothing

Consider smoothing with Gaussian kernel

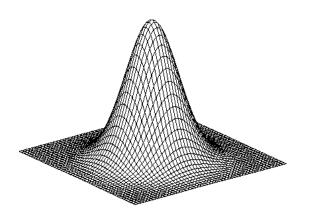


Derivative of Gaussian

- Note that $\frac{d}{dx}(G*I) = \left(\frac{d}{dx}G\right)*I$ and $G'(x) = -\frac{x}{\sigma^2}e^{-\frac{x^2}{2\sigma^2}}$
- This saves us one step

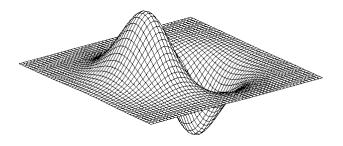


2D edge detection filters



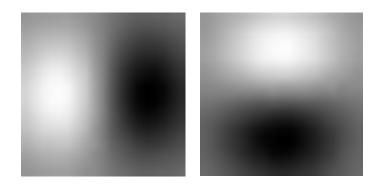
Gaussian

$$G(x, y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2 + y^2}{2\sigma^2}}$$



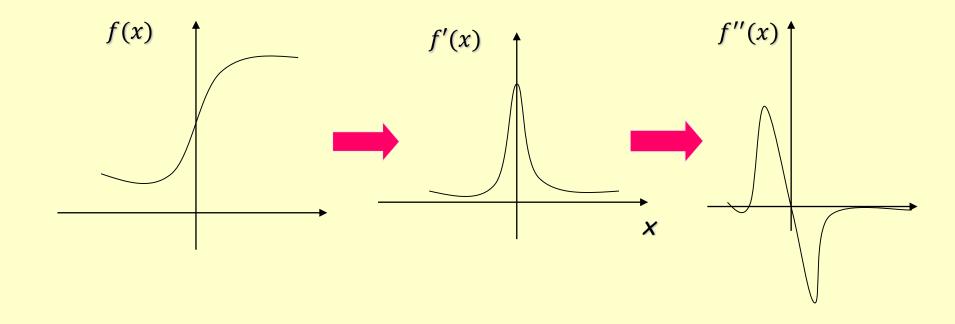
derivative of Gaussian (DOG)

$$\nabla G(x, y) = (G_x, G_y)$$



Second-order derivative filters (1D)

 Peaks of the first-derivative of the input signal correspond to "zero-crossings" of the secondderivative.



Second-order derivative filters (1D)

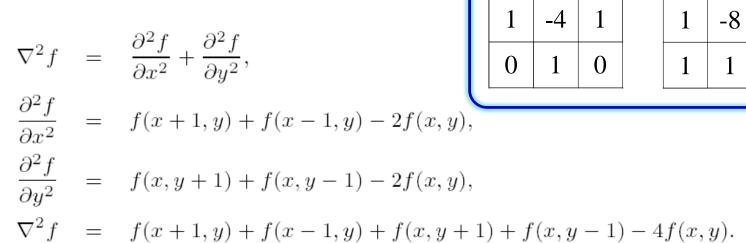
• The condition: f''(x) = 0 is not enough for edgeness

```
-f(x) = c has f''(x) = 0, but there is no edge
```

• We need check whether |f'(x)| is big enough

2D Laplacian Operator

Negative definition



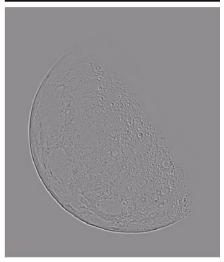
Positive definition

$$\nabla^2 f = -[f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1)] + 4f(x,y).$$

Diagonal derivatives also can be included.

2D Laplacian Operator

f(x,y)

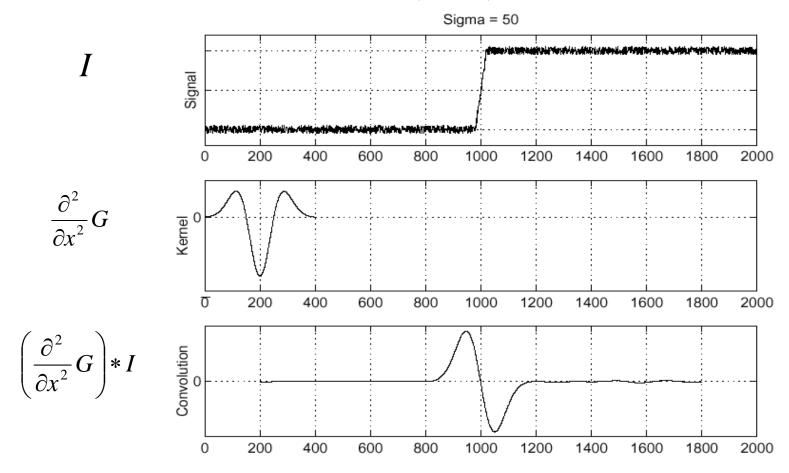


 $\nabla^2 f(x,y)$

- $\nabla^2 I(x,y)$ is a scalar (isotropic)
 - Pros: It can be found using a SINGLE mask
 - Cons: The orientation information is lost
- $\nabla^2 I(x,y)$ is the sum of secondorder derivatives
 - But taking derivatives increases noises
 - Very sensitive to noises
- It is always combined with a smoothing (Gaussian) operation

Laplacian of Gaussian (LOG)

• In 1D, consider $\frac{\partial^2}{\partial x^2}(G*I) = \left(\frac{\partial^2}{\partial x^2}G\right)*I$



Edge is the zero-crossing of the bottom graph

Laplacian of Gaussian (LOG)

- O(x,y) = $\nabla^2(I(x,y) * G(x,y))$
 - Smoothing with a Gaussian filter
 - 2. Finding zerocrossings with a Laplacian filter
- Using linearity:

$$-O(x,y) = \nabla^2 G(x,y) * I(x,y)$$

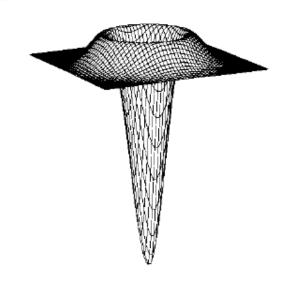
The combined filter is called LOG

$$G(x,y) = \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$

$$\nabla^2 G(x,y) = \frac{\partial^2 G}{\partial x^2} + \frac{\partial^2 G}{\partial y^2}$$

$$= \left(\frac{x^2 + y^2}{\sigma^4} - \frac{2}{\sigma^2}\right) \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$

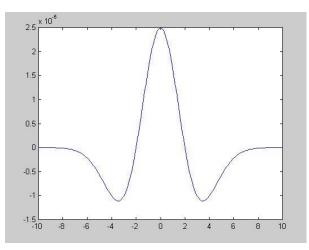
$$= \left(\frac{r^2}{\sigma^4} - \frac{2}{\sigma^2}\right) \exp\left(-\frac{r^2}{2\sigma^2}\right)$$

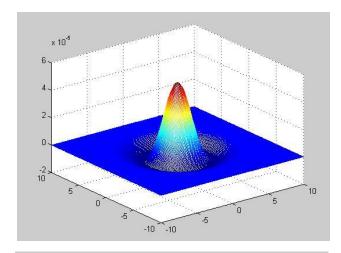


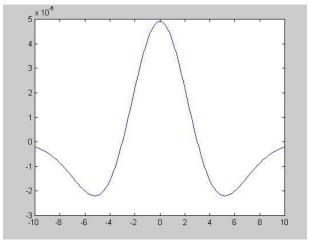
LOG Filter

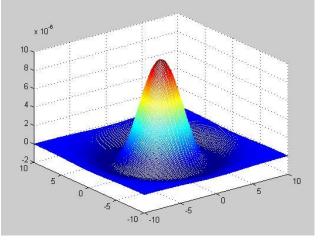
Mexican hat operator (inverted LoG)

1-D 2-D





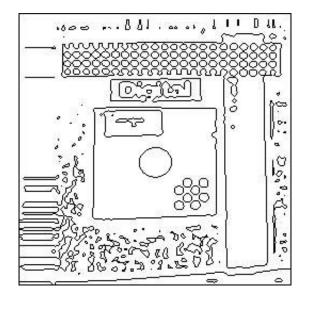




$$\sigma = 3$$

LOG Filter

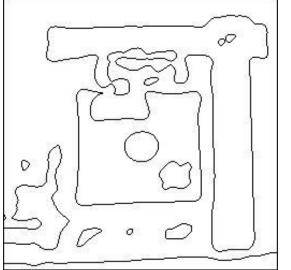
Original image



 $\sigma = 2.0$

 $\sigma = 4.0$





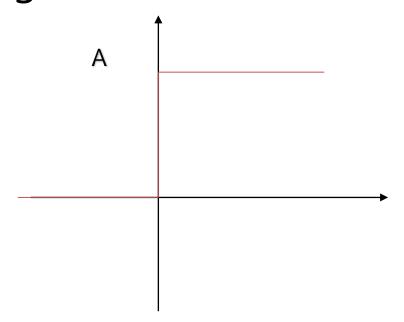
 $\sigma = 6.0$

Canny Edge Detector

- Canny Edge Detector
 - Uses a mathematical model of the edge and noises
 - Sets a performance criterion
 - Synthesizes the optimal filter
- Experiments consistently show that it performs very well
- Widely used by C.V. practitioners for 25 years
- J. Canny, "A Computational Approach to Edge Detection", IEEE
 Transactions on Pattern Analysis and Machine Intelligence, Vol 8, No. 6,
 Nov 1986.

Edge & Noise Model (1D)

An ideal edge can be modeled as an step



Additive, white Gaussian noise

Performance Criteria

- Good detection
 - The filter must have a strong response at the edge location (x = 0)
- Good localization
 - The filter response must be maximum very close to x = 0
- Low false positives
 - There should be only one maximum in a reasonable neighborhood of x=0

Optimal Filter

 Canny found a linear, continuous filter that maximized the three given criteria

There is no close-form solution for the optimal filter

 However, it looks very similar to the derivative of Gaussian (DoG)

Canny Edge Detector

- Three procedures
 - Gradient computation
 - Nonmaximum suppression
 - Thresholding

Procedure: Gradient Computation

- Given an input image I and a zero mean Gaussian filter G (std = σ)
 - 1. J = I * G (smoothing)
 - 2. For each pixel (i, j) (Gradient computation)
 - Compute the image gradient $J(i,j) = (J_x(i,j),J_y(i,j))$
 - Estimate edge strength

$$E_S(i,j) = \left(J_x^2(i,j) + J_y^2(i,j)\right)^{1/2}$$

• Estimate edge orientation

$$E_{o(i,j)} = \arctan\left(\frac{J_{y}(i,j)}{J_{x}(i,j)}\right)$$

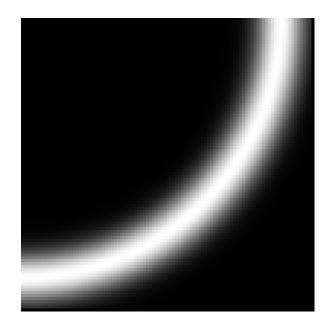
• The output are images E_s and E_o

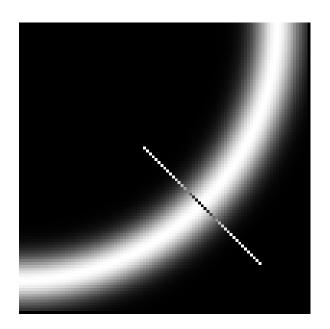
Nonmaximum Suppression

- E_s has the magnitudes of the smoothed gradient.
 - $-\sigma$ determines the amount of smoothing

- E_S has large values at edges
- However, E_s is large along thick trail. how do we identify the significant points?

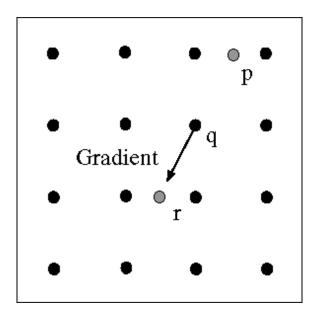
NONMAXIMUM SUPRESSION

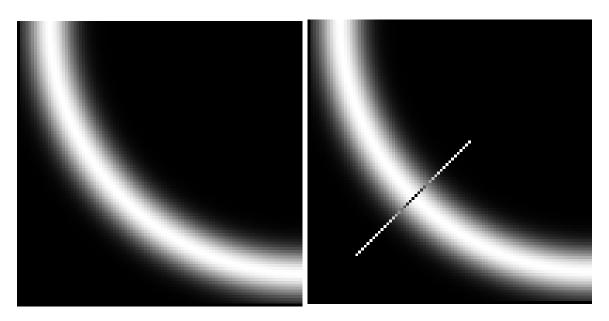




- We wish to mark points along the curve where the magnitude is biggest.
- We can do this by looking for the maximum along a slice normal to the curve (nonmaximum suppression).

NONMAXIMUM SUPRESSION





- Non-maximum suppression:
 - \checkmark At q, we have a maximum if the value is larger than those at both p and at r.
 - ✓ Interpolate to get these value

Procedure: Nonmaximum Suppression

- The inputs are $E_s \& E_o$
- Consider 4 directions $D = \{0^{\circ}, 45^{\circ}, 90^{\circ}, 135^{\circ}\}$
- For each pixel (i, j) do:
 - 1. Find the direction $d \in D$ s.t. $d \cong E_o(i, j)$ (normal to the edge)
 - 2. If $E_s(i,j)$ is smaller than at least one of its neighbor along d

$$IN(i,j) = 0$$

Otherwise,

$$I_N(i,j) = E_S(i,j)$$

• The output is the thinned edge image I_N

Procedure: Thresholding

- Edges are found by thresholding the output of NONMAX_SUPRESSION
- If the threshold is too high:
 - Very few (none) edges
 - Many false negatives, many gaps
- If the threshold is too low:
 - Too many (all pixels) edges
 - Many false positives, many extra edges

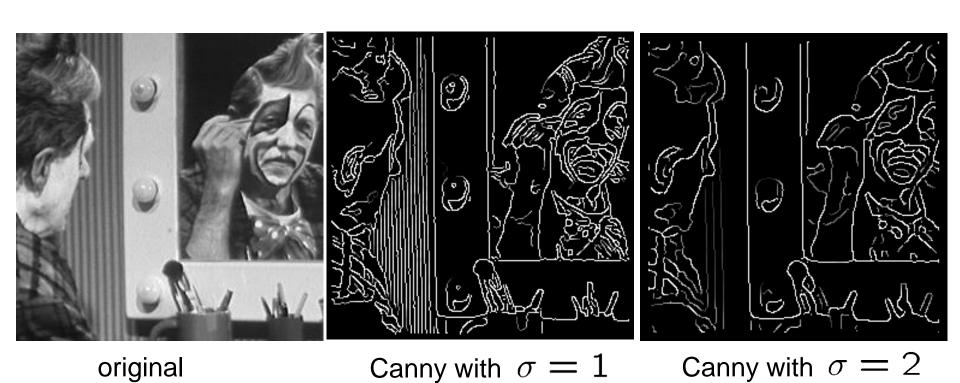
Results

original image

Gradients

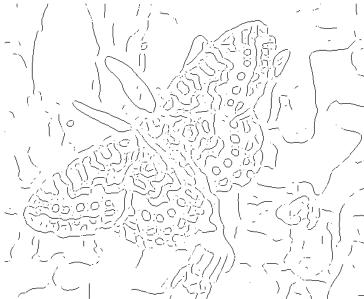
Nonmaximum suppression and thresholding

Results

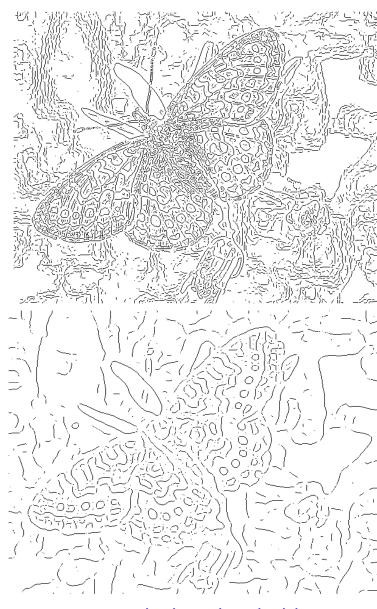


- $oldsymbol{\sigma}$ controls the scale of the features
 - \checkmark large σ detects large scale edges only
 - \checkmark small σ detects fine features as well

fine scale, high threshold



coarse scale, high threshold



coarse scale, low threshold