
KECE471 Computer Vision

Segmentation by Fitting a

Model

Chang-Su Kim

Chapter 15, Computer Vision by Forsyth and Ponce
Note: Dr. Forsyth’s notes are partly used.
 Jun-Sung Kim in Korea University made the first draft of these slides

Fitting

• Choose an object (or model) to represent a set of

tokens

– Objects : line, circle, ellipse, and etc

– e.g. Find a line that best describes a set of points

• Three main questions

– What object represents this set of tokens best?

– Which objects are associated with which tokens?

– How many objects are there?

Line Fitting

• Three main questions

– What line represents this set of points best?

– Which lines gets which tokens?

– How many lines are there?

Hough Transform for Line

Fitting

Hough Transform for Line Fitting

• Hough Transform
– It may answer all three questions

– A line is the set of point (x, y) such that

cos sin 0x y r   

1. For a point (x0, y0), there is a family of lines through

the point

• Different choices of θ give different lines

2. Each point casts a vote for each line in the

corresponding family

3. If there is a line that has many votes, that should be

the line passing through many points

Hough Transform for Line Fitting

• Example : The Hough transform array

– form a line

Hough Transform for Line Fitting

• Mechanics of the Hough transform
– Construct an array representing θ, r

– For each point, render the curve (θ, r) into this array,

casting one vote to each cell

– Difficulties

• How big should the cells be?

– If too big, we cannot distinguish between quite different lines

– If too small, noise causes lines to be missed

– How many lines?

• Count the peaks in the array

– Which points belong to which lines?

• Tag the votes

• Example : The Hough transform array

– for a line with noises in the range [0, 0.05]

Hough Transform for Line Fitting

• # of votes with increasing noise level

Hough Transform for Line Fitting

• Example : The Hough transform array

– for random points

Hough Transform for Line Fitting

• # of votes with increasing random points

Hough Transform for Line Fitting

Line Fitting

Line Fitting with Least Squares

• To choose the line that minimizes
2()i i

i

y ax b 

1
2

1

a xyx x

b yx



    
       

    

Line Fitting with Total Least Squares

• To choose the line that minimizes

 where
2()i i

i

ax by c  2 2 1a b 

2

2

x x x xy x y a a

b bxy x y y y y

c ax by


        
             

  

Which points are on which lines?

• If we know the set of points for a line, the

line fitting is not difficult

• But, finding the set is difficult

• We learn two strategies

– Incremental line fitting

– K-means

Incremental Line Fitting

K-Means Line Fitting

• Note we are minimizing 2

lines data from th line

dist(,)
i j

i j

l x i

l x
 

 

Curve Fitting

• In principle, an easy generalization from

line fitting

• In practice, rather hard

– It is generally difficult to compute the distance

between a point and a curve

Dealing with Outliers

Robustness

• Poor fits in practice

– Line fitting methods involve squared error

terms

– Squared errors can cause bias in the presence

of noise points

• Robustness

– M-estimators

• Square nearby points but threshold far away points

– RANSAC

• Search for good points

Robustness

• Least-squares is sensitive to outliers

zoom

Robust M-Estimator

• It estimates parameters by minimizing

 instead of

• Common choice

– The scale parameter σ controls the point at

which the function flattens out

(;)i

i

d 

2

2 2
(;) i

i

i

d
d

d
 






2

i

i

d

Robust M-Estimator

σ2 = 0.1, 1, 10

Robustness

with an appropriate choice of σ

Robustness

too small σ

Robustness

too large σ

RANSAC
• Choose a small

subset uniformly at

random

• Fit to that

• Anything that is close

to the result is signal;

all others are noises

• Refit

• Do this many times

and choose the best

RANSAC

• RANdom SAmple Consensus

– Issues

• How many times?

– Often enough that we are likely to have a good line

• How big a subset?

– Smallest possible

• What does ‘close’ mean?

– Depends on the problem

• What is a good line?

– One where the number of nearby points is so big that it

is unlikely to be all outliers

RANSAC

• How many times (k)?

– Method 1

• The first successful subset is found at the 𝑟-th iteration

• 𝑤 =probability of non-outlier

𝐸 𝑟 = 𝑤−𝑛, std 𝑟 =
1−𝑤𝑛

𝑤𝑛

• 𝑘 ≥ 𝐸 𝑟 + 𝑐 ⋅ std[𝑟]

– Method 2

• 𝑞 = the allowed probability of experiencing only bad

iterations

• 1 − 𝑤𝑛 𝑘 ≤ 𝑞

