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Fitting 

• Choose an object (or model) to represent a set of 

tokens 

– Objects : line, circle, ellipse, and etc 

– e.g. Find a line that best describes a set of points 

 

 

• Three main questions 

– What object represents this set of tokens best? 

– Which objects are associated with which tokens? 

– How many objects are there? 

 



Line Fitting 

  

 
 

 

 

 

• Three main questions 

– What line represents this set of points best? 

– Which lines gets which tokens? 

– How many lines are there? 

 



Hough Transform for Line 

Fitting 



Hough Transform for Line Fitting 

• Hough Transform 
– It may answer all three questions 

– A line is the set of point (x, y) such that  

 

 

cos sin 0x y r   

1. For a point (x0, y0), there is a family of lines through 

the point 

• Different choices of θ give different lines 

2. Each point casts a vote for each line in the 

corresponding family 

3. If there is a line that has many votes, that should be 

the line passing through many points 

 



Hough Transform for Line Fitting 

• Example : The Hough transform array 

– form a line 



Hough Transform for Line Fitting 

• Mechanics of the Hough transform 
– Construct an array representing θ, r 

– For each point, render the curve (θ, r) into this array, 

casting one vote to each cell 

– Difficulties 

• How big should the cells be? 

– If too big, we cannot distinguish between quite different lines 

– If too small, noise causes lines to be missed 

– How many lines? 

• Count the peaks in the array 

– Which points belong to which lines? 

• Tag the votes 



• Example : The Hough transform array 

– for a line with noises in the range [0, 0.05] 

Hough Transform for Line Fitting 



• # of votes with increasing noise level 

Hough Transform for Line Fitting 



• Example : The Hough transform array 

– for random points 

Hough Transform for Line Fitting 



• # of votes with increasing random points 

Hough Transform for Line Fitting 



Line Fitting 



Line Fitting with Least Squares 

• To choose the line that minimizes 
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Line Fitting with Total Least Squares 

• To choose the line that minimizes 

                            where  
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Which points are on which lines? 

• If we know the set of points for a line, the 

line fitting is not difficult 

• But, finding the set is difficult 

• We learn two strategies  

– Incremental line fitting 

– K-means 

 



Incremental Line Fitting 



K-Means Line Fitting 

• Note we are minimizing 2

lines data from th line
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Curve Fitting 

• In principle, an easy generalization from 

line fitting 

 

• In practice, rather hard 

– It is generally difficult to compute the distance 

between a point and a curve 

 



Dealing with Outliers 



Robustness 

• Poor fits in practice 

– Line fitting methods involve squared error 

terms 

– Squared errors can cause bias in the presence 

of noise points 
 

• Robustness 

– M-estimators 

• Square nearby points but threshold far away points 

– RANSAC 

• Search for good points 



Robustness 

• Least-squares is sensitive to outliers 

zoom 



Robust M-Estimator 

• It estimates parameters by minimizing 

                    instead of 
 

 

• Common choice 
 

 

– The scale parameter σ controls the point at 

which the function flattens out 
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Robust M-Estimator 

σ2 = 0.1, 1, 10 



Robustness 

 

with an appropriate choice of σ  



Robustness 

 

too small σ  



Robustness 

 

too large σ  



RANSAC 
• Choose a small 

subset uniformly at 

random 

• Fit to that 

• Anything that is close 

to the result is signal; 

all others are noises 

• Refit 

• Do this many times 

and choose the best 

 



RANSAC 

• RANdom SAmple Consensus 

– Issues 

• How many times? 

– Often enough that we are likely to have a good line 

• How big a subset? 

– Smallest possible 

• What does ‘close’ mean? 

– Depends on the problem 

• What is a good line? 

– One where the number of nearby points is so big that it 

is unlikely to be all outliers 



RANSAC 

• How many times (k)? 

– Method 1 

• The first successful subset is found at the 𝑟-th iteration 

• 𝑤 =probability of non-outlier 

𝐸 𝑟 = 𝑤−𝑛,    std 𝑟 =
1−𝑤𝑛

𝑤𝑛  

• 𝑘 ≥ 𝐸 𝑟 + 𝑐 ⋅ std[𝑟] 

 

– Method 2 

• 𝑞 = the allowed probability of experiencing only bad 

iterations 

• 1 − 𝑤𝑛 𝑘 ≤ 𝑞 


