Chapter 13. Complex Numbers and Functions

Chang-Su Kim

[^0]
I. Complex Numbers

We introduce the imaginary unit i, which is defined by

$$
i^{2}=-1
$$

Let $z=x+i y$ denote a complex number, where x and y are real numbers. Then its conjugate is defined by

$$
\bar{z}=z^{*}=x-i y .
$$

We can easily see that

- $\operatorname{Re} z=x=\frac{z+\bar{z}}{2}$
- $\operatorname{Im} z=y=\frac{z-\bar{z}}{2 i}$
- z is real $\Leftrightarrow z=\bar{z}$
- z is purely imaginary $\Leftrightarrow z=-\bar{z}$
\star Geometric interpretation:

Note that $z=x+i y$ can be thought as a point (x, y) in the Cartesian coordinate. The same number can be seen as a point (r, θ) also in the polar coordinate, where

$$
x=r \cos \theta \quad \text { and } \quad y=r \sin \theta .
$$

Thus, we have

$$
\begin{aligned}
z & =r(\cos \theta+i \sin \theta) \\
& =r e^{i \theta}
\end{aligned}
$$

where we use the Euler's formula $e^{i \theta}=\cos \theta+i \sin \theta$.

- Euler's formula is natural in the sense that it satisfies

$$
e^{x+y}=e^{x} e^{y}
$$

- For a general $z=x+i y$, we define

$$
\begin{aligned}
e^{z} & =e^{x+i y} \\
& =e^{x} e^{i y} \\
& =e^{x}(\cos y+i \sin y) .
\end{aligned}
$$

- Easy multiplication in polar form: Let $z_{1}=r_{1} e^{i \theta_{1}}$ and $z_{2}=r_{2} e^{i \theta_{2}}$. Then

$$
z_{1} z_{2}=r_{1} r_{2} e^{i\left(\theta_{1}+\theta_{2}\right)}
$$

- What is $\sqrt[4]{1}$?
- In general, $\sqrt[n]{1}=e^{i \frac{2 \pi}{n} k},(0 \leq k \leq n-1)$.

II. Complex Functions

A complex function is given by

$$
w=f(z) .
$$

Let $z=x+i y$ and $w=u+i v$. Then, we have

$$
w=f(z)=u(x, y)+i v(x, y) .
$$

^ Example:

$$
\begin{aligned}
w=f(z) & =z^{2} \\
& =(x+i y)^{2} \\
& =x^{2}-y^{2}+2 i x y .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& u(x, y)=x^{2}-y^{2} \\
& v(x, y)=2 x y .
\end{aligned}
$$

- Limit

$$
\lim _{z \rightarrow z_{0}} f(z)=l .
$$

For every $\epsilon>0$, we have a $\delta>0$ such that, if $\left|z-z_{0}\right|<\delta$ and $z \neq z_{0}$, then $|f(z)-l|<\epsilon$. Intuitively speaking, as z approaches z_{0} from any direction, $f(z)$ gets closer to l.
\star Example: Show that $\lim _{z \rightarrow 0} z^{2}=0$.

- Continuity:

A function $f(z)$ is said to be continuous at $z=z_{0}$ if

$$
\lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right)
$$

- Derivative:

$$
\begin{aligned}
f^{\prime}\left(z_{0}\right) & =\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z} \\
& =\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} .
\end{aligned}
$$

If the limit exists, f is differentiable at $z=z_{0}$.
\star Example 1: Find the derivative of $f(z)=z^{2}$.
\star Example 2: Show that $f(z)=\bar{z}$ is not differentiable.

- Analyticity:
$f(z)$ is said to be analytic in a domain D if it is defined and differentiable at all points in D. $f(z)$ is said to be analytic at a point $z=z_{0}$ if it is analytic in a neighborhood of z_{0}.
* Terminology:
- Neighborhood of a : an open disk around a, i.e., $\{z:|z-a|<\rho\}$.
- Open: A set S is called open if every point of S has a neighborhood consisting of points that belong to S only.
- Connectedness: A set S is called connected if any two of its points can be connected by a curve all of whose points belong to S.
- Domain: an open and connected set.
- Cauchy-Riemann equation:

A function $f(z)=u(x, y)+i v(x, y)$ is analytic if and only if

$$
u_{x}=v_{y} \quad \text { and } \quad u_{y}=-v_{x} .
$$

Also, the derivative is given by

$$
\begin{aligned}
f^{\prime}(z) & =u_{x}(x, y)+i v_{x}(x, y) \\
& =v_{y}(x, y)-i u_{y}(x, y)
\end{aligned}
$$

* Example 1: $f(z)=z^{2}$.
* Example 2: $f(z)=e^{z}$.

Proof)

- Laplace equation:

If $f(z)=u(x, y)+i v(x, y)$ is analytic, both u and v satisfy Laplace's equation. In other words,

$$
\begin{aligned}
& \nabla^{2} u=u_{x x}+u_{y y}=0 \\
& \nabla^{2} v=v_{x x}+v_{y y}=0
\end{aligned}
$$

Proof)

III. Exponential Function

$$
f(z)=e^{z}=e^{x}(\cos y+i \sin y)
$$

Properties)

- $e^{z}=e^{x}$ for $z=x+i 0$.
- $e^{i y}=\cos y+i \sin y$ (Euler's formula)
- $\left|e^{z}\right|=e^{x}$.
- $e^{z} \neq 0$.
- e^{z} is analytic for all z, i.e., it is an entire function.
- $\left(e^{z}\right)^{\prime}=e^{z}$.
- $e^{z_{1}} e^{z_{2}}=e^{z_{1}+z_{2}}$.
- $e^{z+2 \pi i}=e^{z}$.

\star Example: $e^{z}=-2$. What is z ?

IV. Trigonometric and Hyperbolic Functions

- Note that $\cos x=\frac{e^{i x}+e^{-i x}}{2}$ and $\sin x=\frac{e^{i x}-e^{-i x}}{2 i}$. We extend these relationships to general complex numbers by

$$
\begin{aligned}
\cos z & =\frac{e^{i z}+e^{-i z}}{2} \\
\sin z & =\frac{e^{i z}-e^{-i z}}{2 i} \\
\tan z & =\frac{\sin z}{\cos z}
\end{aligned}
$$

All properties we know about real trigonometric functions extend in a straightforward manner to the complex counterparts.
^ Example:

$$
(\sin z)^{\prime}=\frac{i e^{i z}+i e^{-i z}}{2 i}=\cos z
$$

\star Computing $\cos z$:

$$
\begin{aligned}
\cos z & =\frac{e^{i z}+e^{-i z}}{2}, \\
& =\frac{1}{2}\left[e^{-y}(\cos x+i \sin x)+e^{y}(\cos x-i \sin x)\right] \\
& =\frac{1}{2}\left(e^{-y}+e^{y}\right) \cos x-i \frac{1}{2}\left(e^{y}-e^{-y}\right) \sin x \\
& =\cosh y \cos x-i \sinh y \sin x .
\end{aligned}
$$

- Hyper cosine and sine are defined by

$$
\begin{aligned}
\cosh z & =\frac{e^{z}+e^{-z}}{2} \\
\sinh z & =\frac{e^{z}-e^{-z}}{2}
\end{aligned}
$$

- We have the relationships between the trignometric and the hyperbolic functions.

$$
\begin{aligned}
\cosh i z & =\cos z \\
\sinh i z & =i \sin z
\end{aligned}
$$

V. Logarithm

$$
\begin{equation*}
\operatorname{Ln} z=\ln |z|+i \operatorname{Arg} z, \quad(-\pi<\operatorname{Arg} z \leq \pi) . \tag{1}
\end{equation*}
$$

\star Derivation of logarithmic function:
Note that the logarithm is the inverse of the exponential function. Thus,

$$
w=\ln z \quad \Rightarrow \quad z=e^{w} .
$$

Let $z=r e^{i \theta}$ and $w=u+i v$. Then, $r e^{i \theta}=e^{u+i v}=e^{u} e^{i v}$. Therefore, we have $e^{u}=r$ and $v=\theta+2 n \pi$, where n is an integer. Therefore,

$$
\begin{aligned}
w & =\ln z \\
& =u+i v \\
& =\ln r+i(\theta+2 n \pi) \\
& =\ln r+i(\arg z+2 n \pi)
\end{aligned}
$$

The imaginary part v is not uniquely defined. If we constrain it to be a principal value between $-\pi$ and π, we come to the definition in (1).

Properties:

1. For negative real $z, \operatorname{Ln} z=\ln |z|+i \pi$.
2. $e^{\mathrm{Ln} z}=z$.
3. $(\operatorname{Ln} z)^{\prime}=\frac{1}{z}$.

夫 Example: Evaluate Ln (3-4i).
VI. General Powers

$$
z^{c}=e^{\operatorname{Ln} z^{c}}=e^{c \operatorname{Ln} z}
$$

\star Example: Evaluate i^{i}.

[^0]: The contents herein are based on the book "Advanced Engineering Mathematics" by E. Kreyszig and only for the course KEEE202, Korea University.

