Chapter 15. Power Series and Taylor Series

Chang-Su Kim

[^0]
I. Sequences and Series

We denote a sequence of complex numbers, $z_{1}, z_{2}, z_{3}, \ldots$, by $\left\{z_{n}\right\}$.

* Convergence

A sequence is called convergent

$$
\lim _{n \rightarrow \infty} z_{n}=c,
$$

if for any $\epsilon>0$, there exists N such that

$$
\left\|z_{n}-c\right\|<\epsilon \quad \text { for all } n>N .
$$

A sequence is said to be divergent, if it is not convergent.

Let us consider a series

$$
\sum_{m=1}^{\infty} z_{m}=z_{1}+z_{2}+\cdots
$$

Its partial sum is defined by

$$
s_{n}=\sum_{m=1}^{n} z_{m} .
$$

The series is called convergent if $\left\{s_{n}\right\}$ converges.

* Theorem: If a series $z_{1}+z_{2}+\cdots \quad$ converges, then

$$
\lim _{n \rightarrow \infty} z_{n}=0
$$

This theorem implies that if

$$
\lim _{n \rightarrow \infty} z_{n} \neq 0,
$$

the series diverges. However, it does not imply that if

$$
\lim _{n \rightarrow \infty} z_{n}=0,
$$

the series converges.
\star Cauchy's convergence test:
A series $z_{1}+z_{2}+\cdots$ is convergent, if and only if for any $\epsilon>0$ we can find N such that

$$
\left\|z_{n+1}+\cdots+z_{n+p}\right\|<\epsilon
$$

for all $n>N$ and p.

A series $z_{1}+z_{2}+\cdots$ is called absolutely convergent, if

$$
\sum_{m=1}^{\infty}\left\|z_{m}\right\|
$$

is convergent.
\star Theorem: If a series is absolutely convergent, it is convergent.

Note that Cauchy's convergence test is not helpful in practice, though it is very useful in proving many theorems and properties. Let us see how to test whether a given sequence is convergent or not in practice.
\star Practical Method 1 (Comparison Test): If $\left\|z_{i}\right\| \leq b_{i}$ and $\sum b_{i}$ converges, then $\sum z_{i}$ converges.
\star Practical Method 2 (Ratio Test): $\quad \sum z_{n}$ converges, if

$$
\left\|\frac{z_{n+1}}{z_{n}}\right\| \leq q<1 \quad \text { for } n>N
$$

where N is any fixed number.

Variation of Ratio Test: Let $L=\lim _{n \rightarrow \infty}\left\|\frac{z_{n+1}}{z_{n}}\right\|$.

- If $L<1$, the series converges.
- If $L>1$, it diverges.
- If $L=1$, the test fails.
\star Practical Method 3 (Root Test): $\quad \sum z_{n}$ converges, if

$$
\sqrt[n]{\left\|z_{n}\right\|} \leq q<1 \quad \text { for } n>N
$$

where N is any fixed number.

Variation of Root Test: Let $L=\lim _{n \rightarrow \infty} \sqrt[n]{\left\|z_{n}\right\|}$.

- If $L<1$, the series converges.
- If $L>1$, it diverges.
- If $L=1$, the test fails.

II. Power Series

Let us consider a series, given by

$$
\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}=f(z)
$$

It contains a variable z, so it is a function $f(z)$. Its convergence also depends on z.
\star Ex 1: $\sum_{n=0}^{\infty} z^{n}$ converges when $\|z\|<1$
\star Ex $2: \sum_{n=0}^{\infty} \frac{z^{n}}{n!}$ converges everywhere.
$\star \operatorname{Ex} 3: \sum_{n=0}^{\infty} n!z^{n} \quad$ converges only when $z=0 .$.
\star Convergence of a Power Series:

- It converges at the center z_{0}
- If it converges at a point z_{1}, it converges for every z closer to z_{0} than z_{1}, i.e., $\left\|z-z_{0}\right\|<\left\|z_{1}-z_{0}\right\|$.
- If it diverges at z_{2}, it diverges for every z farther away from z_{2}, i.e., $\left\|z-z_{0}\right\|>\left\|z_{2}-z_{0}\right\|$.
\Rightarrow These properties imply that the region of convergence has always a circular shape.

Proof) Skipped.
\star Radius of Convergence R :
The radius of convergence R is defined such that

- the series converges within $\left\|z-z_{0}\right\|<R$,
- it diverges when $\left\|z-z_{0}\right\|>R$,
- it may converge or diverge on the circle.

It is a convention to set $R=\infty$ if the series converges everywhere. Also, $R=0$, if the series converges only when $z=z_{0}$.

* Theorem (How to find R ?):

Suppose that

$$
\lim _{n \rightarrow \infty} \frac{\left\|a_{n+1}\right\|}{\left\|a_{n}\right\|}=L^{*}
$$

Then

$$
\begin{gathered}
R=\frac{1}{L^{*}} . \\
\left(\begin{array}{lll}
R=\infty & \text { if } & L^{*}=0 \\
R=0 & \text { if } & L^{*}=\infty
\end{array}\right)
\end{gathered}
$$

* Ex :

$$
\sum_{n=1}^{\infty} \frac{(z+i)^{n}}{n^{2}}
$$

\star Ex :

$$
\sum_{n=0}^{\infty} \frac{n^{n}}{n!}(z+2 i)^{n}
$$

III. Property of Power Series

We consider the properties of a power series

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} .
$$

These properties can be straightforwardly extended to the general case of

$$
g(z)=\sum_{n=0}^{\infty} b_{n}\left(z-z_{0}\right)^{n} .
$$

1. (Continuity at the center) If the power series has the radius of convergence $R>0$, it is continuous at $z=0$.

$$
\lim _{z \rightarrow 0} f(z)=f(0)=a_{0}
$$

2. (Unique representation) If $f(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots=b_{0}+b_{1} z+b_{2} z^{2}+\cdots$, then $a_{0}=b_{0}$, $a_{1}=b_{1}, a_{2}=b_{2}, \cdots$.
3. (Addition) If $f(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots$ with R_{1} and $g(z)=b_{0}+b_{1} z+b_{2} z^{2}+\cdots$ with R_{2}, then $f(z)+g(z)=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) z+\left(a_{2}+b_{2}\right) z^{2}+\cdots \quad$ with $R \geq \min \left(R_{1}, R_{2}\right)$.
4. (Multiplication)

$$
\begin{aligned}
f(z) \cdot g(z) & =a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right) z+\left(a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right) z^{2}+\cdots \\
& =\sum_{n=0}^{\infty}\left(a_{0} b_{n}+a_{1} b_{n-1}+\cdots+a_{n} b_{0}\right) z^{n} \quad \text { with } R \geq \min \left(R_{1}, R_{2}\right) .
\end{aligned}
$$

5. (Differentiation) $f^{\prime}(z)=a_{1}+2 a_{2} z+3 a_{3} z^{2}+4 a_{4} z^{3}+\cdots=\sum_{n=1}^{\infty} n a_{n} z^{n-1} \quad$ with $R=R_{1}$.
6. (Integration) $\int f(z) d z=a_{0} z+a_{1} \frac{z^{2}}{2}+a_{2} \frac{z^{3}}{3}+\cdots=\sum_{n=0}^{\infty} \frac{a_{n}}{n+1} z^{n+1} \quad$ with $R=R_{1}$.
7. A power series with a nonzero radius of convergence R represents an analytic function on the domain $\{z:\|z\|<R\}$.
\star Ex 1 : Find the radius of convergence of $\sum_{n=2}^{\infty} \frac{n(n-1)}{3^{n}}(z-2 i)^{n}$
\star Ex 2: If $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ is odd, show that $a_{n}=0$ for all even n.

IV. Taylor Series

* Theorem: Every analytic function can be represented by a power series

$$
f(z)=\sum_{n=1}^{\infty} \frac{f^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n} .
$$

Sketch of proof)

Note that for z^{*} on C, we have

$$
\begin{aligned}
\frac{1}{z^{*}-z} & =\frac{1}{z^{*}-z_{0}-\left(z-z_{0}\right)} \\
& =\frac{1}{z^{*}-z_{0}} \cdot \frac{1}{1-\frac{z-z_{0}}{z^{*}-z_{0}}} \\
& =\frac{1}{z^{*}-z_{0}}\left(1+\frac{z-z_{0}}{z^{*}-z_{0}}+\left(\frac{z-z_{0}}{z^{*}-z_{0}}\right)^{2}+\cdots\right) .
\end{aligned}
$$

$$
\begin{aligned}
f(z) & =\frac{1}{2 \pi i} \oint_{C} \frac{f\left(z^{*}\right)}{z^{*}-z} d z^{*} \\
& =\frac{1}{2 \pi i} \oint_{C} \frac{f\left(z^{*}\right)}{z^{*}-z_{0}} d z^{*}+\frac{\left(z-z_{0}\right)}{2 \pi i} \oint_{C} \frac{1}{\left(z^{*}-z_{0}\right)^{2}} d z^{*}+\frac{\left(z-z_{0}\right)^{2}}{2 \pi i} \oint_{C} \frac{1}{\left(z^{*}-z_{0}\right)^{3}} d z^{*}+\cdots \\
& =\sum_{n=0}^{\infty} \frac{\left(z-z_{0}\right)^{n}}{2 \pi i} \oint_{C} \frac{f\left(z^{*}\right)}{\left(z^{*}-z_{0}\right)^{n+1}} d z^{*} \\
& =\sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}\left(z_{0}\right)\left(z-z_{0}\right)^{n} . \quad\left(\because \frac{n!}{2 \pi i} \oint_{C} \frac{f\left(z^{*}\right)}{\left(z^{*}-z_{0}\right)^{n+1}} d z^{*}=f^{(n)}\left(z_{0}\right)\right)
\end{aligned}
$$

* A few Taylor series.
- $f(z)=\frac{1}{1-z}=1+z+z^{2}+\cdots \quad|z|<1$
- $e^{z}=1+z+\frac{z^{2}}{2}+\frac{z^{3}}{3!}+\cdots$
- $\cos z=1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}+\cdots$
- $\sin z=z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}+\cdots$
- $\operatorname{Ln}(1+z)=z-\frac{1}{2} z^{2}+\frac{1}{3} z^{3}-\frac{1}{4} z^{4}+\cdots$
* Examples:
- $\frac{1}{1+z^{2}}$
- $\arctan z$
- Represent $\frac{1}{c-z}$ in terms of $\left(z-z_{0}\right)^{n}$, where $c \neq z_{0}$.
- $\mathrm{Si}(z)=\int_{0}^{z} \frac{\sin z}{z} d z$

[^0]: The contents herein are based on the book "Advanced Engineering Mathematics" by E. Kreyszig and only for the course KEEE202, Korea University.

