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Chapter 15. Power Series and Taylor Series

Chang-Su Kim

The contents herein are based on the book “Advanced Engineering Mathematics” by E. Kreyszig and only for

the course KEEE202, Korea University.
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I. Sequences and Series

We denote a sequence of complex numbers, z1, z2, z3, . . ., by {zn}.

� Convergence

A sequence is called convergent

lim
n→∞ zn = c,

if for any ε > 0, there exists N such that

‖zn − c‖ < ε for all n > N.

A sequence is said to be divergent, if it is not convergent.

Let us consider a series ∞∑
m=1

zm = z1 + z2 + · · ·

Its partial sum is defined by

sn =
n∑

m=1

zm.

The series is called convergent if {sn} converges.

� Theorem: If a series z1 + z2 + · · · converges, then

lim
n→∞ zn = 0.

This theorem implies that if

lim
n→∞ zn �= 0,

the series diverges. However, it does not imply that if

lim
n→∞ zn = 0,

the series converges.
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� Cauchy’s convergence test:

A series z1 + z2 + · · · is convergent, if and only if for any ε > 0 we can find N such that

‖zn+1 + · · · + zn+p‖ < ε

for all n > N and p.

A series z1 + z2 + · · · is called absolutely convergent, if

∞∑
m=1

‖zm‖

is convergent.

� Theorem: If a series is absolutely convergent, it is convergent.
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Note that Cauchy’s convergence test is not helpful in practice, though it is very useful in

proving many theorems and properties. Let us see how to test whether a given sequence is

convergent or not in practice.

� Practical Method 1 (Comparison Test): If ‖zi‖ ≤ bi and
∑

bi converges, then
∑

zi converges.

� Practical Method 2 (Ratio Test):
∑

zn converges, if

‖zn+1

zn
‖ ≤ q < 1 for n > N,

where N is any fixed number.

Variation of Ratio Test: Let L = limn→∞ ‖ zn+1

zn
‖.

• If L < 1, the series converges.

• If L > 1, it diverges.

• If L = 1, the test fails.

� Practical Method 3 (Root Test):
∑

zn converges, if

n
√
‖zn‖ ≤ q < 1 for n > N,

where N is any fixed number.

Variation of Root Test: Let L = limn→∞ n
√‖zn‖.

• If L < 1, the series converges.

• If L > 1, it diverges.

• If L = 1, the test fails.
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II. Power Series

Let us consider a series, given by
Complex variable

Coefficient Center

It contains a variable z, so it is a function f(z). Its convergence also depends on z.

� Ex 1 :
∑∞

n=0 zn converges when ‖z‖ < 1

� Ex 2 :
∑∞

n=0
zn

n! converges everywhere.

� Ex 3 :
∑∞

n=0 n!zn converges only when z = 0..

� Convergence of a Power Series:

• It converges at the center z0

Z1

Z2

Converges

Diverges

• If it converges at a point z1, it converges for every z closer to z0 than z1, i.e., ‖z−z0‖ < ‖z1−z0‖.
• If it diverges at z2, it diverges for every z farther away from z2, i.e., ‖z − z0‖ > ‖z2 − z0‖.
⇒ These properties imply that the region of convergence has always a circular shape.

Proof) Skipped.
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� Radius of Convergence R:

The radius of convergence R is defined such that

• the series converges within ‖z − z0‖ < R,

• it diverges when ‖z − z0‖ > R,

• it may converge or diverge on the circle.

It is a convention to set R = ∞ if the series converges everywhere. Also, R = 0, if the series

converges only when z = z0.

� Theorem (How to find R?):

Suppose that

lim
n→∞

‖an+1‖
‖an‖ = L∗.

Then

R =
1
L∗ .

⎛
⎝ R = ∞ if L∗ = 0

R = 0 if L∗ = ∞

⎞
⎠

� Ex : ∞∑
n=1

(z + i)n

n2

� Ex : ∞∑
n=0

nn

n!
(z + 2i)n
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III. Property of Power Series

We consider the properties of a power series

f(z) =
∞∑

n=0

anzn.

These properties can be straightforwardly extended to the general case of

g(z) =
∞∑

n=0

bn(z − z0)n.

1. (Continuity at the center) If the power series has the radius of convergence R > 0, it is

continuous at z = 0.

lim
z→0

f(z) = f(0) = a0.

2. (Unique representation) If f(z) = a0 + a1z + a2z
2 + · · · = b0 + b1z + b2z

2 + · · · , then a0 = b0,

a1 = b1, a2 = b2, · · · .
3. (Addition) If f(z) = a0 + a1z + a2z

2 + · · · with R1 and g(z) = b0 + b1z + b2z
2 + · · · with R2,

then f(z) + g(z) = (a0 + b0) + (a1 + b1)z + (a2 + b2)z2 + · · · with R ≥ min(R1, R2).

4. (Multiplication)

f(z) · g(z) = a0b0 + (a0b1 + a1b0)z + (a0b2 + a1b1 + a2b0)z2 + · · ·

=
∞∑

n=0

(a0bn + a1bn−1 + · · · + anb0)zn with R ≥ min(R1, R2).

5. (Differentiation) f ′(z) = a1 + 2a2z + 3a3z
2 + 4a4z

3 + · · · =
∑∞

n=1 nanzn−1 with R = R1.

6. (Integration)
∫

f(z)dz = a0z + a1
z2

2 + a2
z3

3 + · · · =
∑∞

n=0
an

n+1zn+1 with R = R1.

7. A power series with a nonzero radius of convergence R represents an analytic function on the

domain {z : ‖z‖ < R}.

� Ex 1 : Find the radius of convergence of
∑∞

n=2
n(n−1)

3n (z − 2i)n

� Ex 2: If f(z) =
∑∞

n=0 anzn is odd, show that an = 0 for all even n.
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IV. Taylor Series

� Theorem: Every analytic function can be represented by a power series

f(z) =
∞∑

n=1

f (n)(z0)
n!

(z − z0)n.

Sketch of proof)

z0

Cz

Note that for z∗ on C, we have

1
z∗ − z

=
1

z∗ − z0 − (z − z0)

=
1

z∗ − z0
· 1
1 − z−z0

z∗−z0

=
1

z∗ − z0

(
1 +

z − z0

z∗ − z0
+

( z − z0

z∗ − z0

)2
+ · · ·

)
.

f(z) =
1

2πi

∮
C

f(z∗)
z∗ − z

dz∗

=
1

2πi

∮
C

f(z∗)
z∗ − z0

dz∗ +
(z − z0)

2πi

∮
C

1
(z∗ − z0)2

dz∗ +
(z − z0)2

2πi

∮
C

1
(z∗ − z0)3

dz∗ + · · ·

=
∞∑

n=0

(z − z0)n

2πi

∮
C

f(z∗)
(z∗ − z0)n+1

dz∗

=
∞∑

n=0

1
n!

f (n)(z0)(z − z0)n.

(
∵ n!

2πi

∮
C

f(z∗)
(z∗ − z0)n+1

dz∗ = f (n)(z0)
)

September 22, 2006 LECTURE NOTES



9

� A few Taylor series.

• f(z) = 1
1−z = 1 + z + z2 + · · · |z| < 1

• ez = 1 + z + z2

2 + z3

3! + · · ·
• cos z = 1 − z2

2! + z4

4! + · · ·
• sin z = z − z3

3! + z5

5! + · · ·
• Ln(1 + z) = z − 1

2z2 + 1
3z3 − 1

4z4 + · · ·

� Examples:

• 1
1+z2

• arctan z

• Represent 1
c−z in terms of (z − z0)n, where c �= z0.

• Si(z) =
∫ z
0

sin z
z dz
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