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CLUSTERING

 Clustering – unsupervised classification, where the
class labelling of training patterns is unavailable

 It reveals the organization of patterns into “sensible”
clusters, which will allow us to discover similarities and
differences among patterns and to derive useful
conclusions about them

• Ex) Image segmentation:

pattern = element = color pixel

 Clustering is one of the most primitive mental activities
of humans

• Ex) A “dog” barks
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 Typical steps in a clustering task

1. Feature selection: Information-rich, non-redundant
features

2. Proximity measure:

• How similar or dissimilar are two feature vectors?

3. Clustering criterion

• It depends on the type of clusters that are sensible or
desirable

• It is expressed via a cost function

4. Clustering algorithm

5. Validation of results.

6. Interpretation of results.
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Depending on the similarity measure, the clustering
criterion and the clustering algorithm different clusters
may result. Subjectivity is a reality to live with from
now on.

 A simple example: How many clusters?

 Natural cluster – a contiguous region of the space
containing a relatively high density of points, separated
from other high density regions by regions of relatively
low density of points

2 or 4 ??
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 Application areas for clustering 

 Data reduction: vector quantization 

 Prediction based on groups: In a mart, a wine buyer 
usually buys cheese too
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TYPES OF FEATURES

With respect to their domain

 Continuous

 Discrete

• Binary or dichotomous (the domain consists of two possible values).

With respect to the relative significance of values

 Nominal: a value encodes a state

• 0 (male), 1 (female)

 Ordinal: values are meaningfully ordered

• 4 (excellent), 3 (very good), 2 (good), 1(bad)

 Interval-scaled: differences of two values are meaningful, but 

ratios are not

• 5𝑜𝐶 and 10 𝑜𝐶

 Ratio-scaled: ratios are also meaning ful

• 50 kg and 100 kg

Ratio-scaled => interval-scaled => nominal => ordinal
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 Clustering Definitions

 Hard Clustering: Each point belongs to a single cluster

• Let 

• An m-clustering R of X is defined as the 

partition of X into m sets (clusters), C1, C2,…,Cm,

so that

–

–

–

In addition, data in Ci are more similar to each 

other and less similar to the data in the rest of the 
clusters.  
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 Fuzzy clustering:  Each point belongs to all clusters up 
to some degree.

A fuzzy clustering of X into m clusters is characterized 

by m functions (membership functions)

•

•
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These are known as membership functions.  
Thus, each xi belongs to any cluster “up to 
some degree”, depending on the value of
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PROXIMITY MEASURES

 Between vectors

Dissimilarity measure (between vectors of X) is a 
function

with the following properties

•

•

•

 XXd :
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If in addition

•

•

(triangular inequality)

d is called a metric dissimilarity measure.
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Similarity measure (between vectors of X) is a 

function

with the following properties

•

•

•

Xyxsyxss  ,,),(: 00

 XXs :

Xyxxysyxs  ,),,(),(

Xxsxxs  ,),( 0



12

If in addition

•

•

s is called a metric similarity measure.

 Between sets

Let Di  X, i=1,…,k and U={D1,…,Dk}

A proximity measure  on U is a function

A dissimilarity measure has to satisfy the relations of 
dissimilarity measure between vectors, where Di

’
‘s are used 

in place of x, y (similarly for similarity measures).
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PROXIMITY MEASURES BETWEEN VECTORS

 Real-valued vectors

 Dissimilarity measures (DMs)

• Weighted lp metric DMs

Interesting instances are obtained for

– p=1 (weighted Manhattan norm)

– p=2 (weighted Euclidean norm)

– p=∞ (d(x,y)=max1il wi|xi-yi| )
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• Other measures

–

where bj and aj are the maximum and the minimum 

values of the j-th feature, among the vectors of X

(dependence on the current data set)
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 Similarity measures

• Inner product

• Tanimoto measure
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Another similarity measure

 𝑠𝑐 𝐱, 𝐲 = 1 −
𝑑2 𝐱, 𝐲

𝐱 + 𝐲
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 Discrete-valued vectors

 Let F={0,1,…,k-1} be a set of symbols and X={x1,…,xN}  Fl

 Let A(x,y)=[aij], i, j=0,1,…,k-1, where aij is the number of places where 
x has the i-th symbol and y has the j-th symbol.

NOTE:

Several proximity measures can be expressed as combinations of the 
elements of A(x,y).

 Dissimilarity measures:

• The Hamming distance (number of places where x and y differ)

• The l1 distance
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 Similarity measures:

• Tanimoto measure :

where

• Measures that exclude a00:

• Measures that include a00:
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