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CLUSTERING

 Clustering – unsupervised classification, where the
class labelling of training patterns is unavailable

 It reveals the organization of patterns into “sensible”
clusters, which will allow us to discover similarities and
differences among patterns and to derive useful
conclusions about them

• Ex) Image segmentation:

pattern = element = color pixel

 Clustering is one of the most primitive mental activities
of humans

• Ex) A “dog” barks
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 Typical steps in a clustering task

1. Feature selection: Information-rich, non-redundant
features

2. Proximity measure:

• How similar or dissimilar are two feature vectors?

3. Clustering criterion

• It depends on the type of clusters that are sensible or
desirable

• It is expressed via a cost function

4. Clustering algorithm

5. Validation of results.

6. Interpretation of results.
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Depending on the similarity measure, the clustering
criterion and the clustering algorithm different clusters
may result. Subjectivity is a reality to live with from
now on.

 A simple example: How many clusters?

 Natural cluster – a contiguous region of the space
containing a relatively high density of points, separated
from other high density regions by regions of relatively
low density of points

2 or 4 ??
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 Application areas for clustering 

 Data reduction: vector quantization 

 Prediction based on groups: In a mart, a wine buyer 
usually buys cheese too
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TYPES OF FEATURES

With respect to their domain

 Continuous

 Discrete

• Binary or dichotomous (the domain consists of two possible values).

With respect to the relative significance of values

 Nominal: a value encodes a state

• 0 (male), 1 (female)

 Ordinal: values are meaningfully ordered

• 4 (excellent), 3 (very good), 2 (good), 1(bad)

 Interval-scaled: differences of two values are meaningful, but 

ratios are not

• 5𝑜𝐶 and 10 𝑜𝐶

 Ratio-scaled: ratios are also meaning ful

• 50 kg and 100 kg

Ratio-scaled => interval-scaled => nominal => ordinal
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 Clustering Definitions

 Hard Clustering: Each point belongs to a single cluster

• Let 

• An m-clustering R of X is defined as the 

partition of X into m sets (clusters), C1, C2,…,Cm,

so that

–

–

–

In addition, data in Ci are more similar to each 

other and less similar to the data in the rest of the 
clusters.  
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 Fuzzy clustering:  Each point belongs to all clusters up 
to some degree.

A fuzzy clustering of X into m clusters is characterized 

by m functions (membership functions)

•

•

•
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These are known as membership functions.  
Thus, each xi belongs to any cluster “up to 
some degree”, depending on the value of
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PROXIMITY MEASURES

 Between vectors

Dissimilarity measure (between vectors of X) is a 
function

with the following properties

•

•

•

 XXd :



10

If in addition

•

•

(triangular inequality)

d is called a metric dissimilarity measure.
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Similarity measure (between vectors of X) is a 

function

with the following properties

•

•

•
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If in addition

•

•

s is called a metric similarity measure.

 Between sets

Let Di  X, i=1,…,k and U={D1,…,Dk}

A proximity measure  on U is a function

A dissimilarity measure has to satisfy the relations of 
dissimilarity measure between vectors, where Di

’
‘s are used 

in place of x, y (similarly for similarity measures).
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PROXIMITY MEASURES BETWEEN VECTORS

 Real-valued vectors

 Dissimilarity measures (DMs)

• Weighted lp metric DMs

Interesting instances are obtained for

– p=1 (weighted Manhattan norm)

– p=2 (weighted Euclidean norm)

– p=∞ (d(x,y)=max1il wi|xi-yi| )





l

i

pp

iiip yxwyxd
1

/1)||(),(



14

• Other measures

–

where bj and aj are the maximum and the minimum 

values of the j-th feature, among the vectors of X

(dependence on the current data set)

–
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 Similarity measures

• Inner product

• Tanimoto measure
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Another similarity measure

 𝑠𝑐 𝐱, 𝐲 = 1 −
𝑑2 𝐱, 𝐲

𝐱 + 𝐲
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 Discrete-valued vectors

 Let F={0,1,…,k-1} be a set of symbols and X={x1,…,xN}  Fl

 Let A(x,y)=[aij], i, j=0,1,…,k-1, where aij is the number of places where 
x has the i-th symbol and y has the j-th symbol.

NOTE:

Several proximity measures can be expressed as combinations of the 
elements of A(x,y).

 Dissimilarity measures:

• The Hamming distance (number of places where x and y differ)

• The l1 distance
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 Similarity measures:

• Tanimoto measure :

where

• Measures that exclude a00:

• Measures that include a00:



















1

1

1

1

1

1),(
k

i

k

j

ijyx

k

i

ii

T

ann

a

yxs











1

1

1

0

,
k

i

k

j

ijx an 









1

0

1

1

,
k

i

k

j

ijy an

la
k

i

ii /
1

1






)/( 00

1

1

ala
k

i

ii 




la
k

i

ii /
1

0







