CLUSTERING

% Clustering — unsupervised classification, where the
class labelling of training patterns is unavailable

> It reveals the organization of patterns into “sensible

clusters, which will allow us to discover similarities and

differences among patterns and to derive useful
conclusions about them

e Ex) Image segmentation:
pattern = element = color pixel
» Clustering is one of the most primitive mental activities
of humans
e Ex) A “dog” barks
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s Typical steps in a clustering task

1. Feature selection: Information-rich, non-redundant
features

2. Proximity measure:
e How similar or dissimilar are two feature vectors?

3. Clustering criterion

e It depends on the type of clusters that are sensible or
desirable

o It is expressed via a cost function
4. Clustering algorithm
5. Validation of results.
6. Interpretation of results.



Depending on the similarity measure, the clustering
criterion and the clustering algorithm different clusters
may result. Subjectivity is a reality to live with from
now on.

> A simple example: How many clusters?

20r4??

» Natural cluster — a contiguous region of the space
containing a relatively high density of points, separated
from other high density regions by regions of relatively

low density of points '



 Application areas for clustering
» Data reduction: vector quantization

» Prediction based on groups: In a mart, a wine buyer
usually buys cheese too



TYPES OF FEATURES

s With respect to their domain
» Continuous
» Discrete
e Binary or dichotomous (the domain consists of two possible values).
“ With respect to the relative significance of values

» Nominal: a value encodes a state
e 0 (male), 1 (female)

» Ordinal: values are meaningfully ordered
e 4 (excellent), 3 (very good), 2 (good), 1(bad)
> Interval-scaled: differences of two values are meaningful, but

ratios are not
e 5°Cand 10°C

> Ratio-scaled: ratios are also meaning ful
e 50 kg and 100 kg

Ratio-scaled => interval-scaled => nominal => ordinal



% Clustering Definitions
» Hard Clustering: Each point belongs to a single cluster
o Let X ={X;, X5, Xy}

e An m-clustering R of X is defined as the
partition of X into m sets (clusters), C,, C,,...,C,,
so that
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- CnNC, =, i+j,i,j=12,.,m

In addition, data in C; are more similar to each
other and less similar to the data in the rest of the
clusters.



» Fuzzy clustering: Each point belongs to all clusters up
to some degree.

A fuzzy clustering of X into m clusters is characterized
by m functions (membership functions)

e U, :x—[01], J=12,..,m
LU O YT =i, - S
=1
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These are known as membership functions.
Thus, each x; belongs to any cluster “up to
some degree”, depending on the value of

U R Y =120 m

u;(x;) close to 1= high grade of

membershipof x. to cluster j.
u;(x;)close to 0=

low grade of membership.




PROXIMITY MEASURES

% Between vectors

»Dissimilarity measure (between vectors of X) is a
function

d: XxX——>R
with the following properties
. dd, eR: —0<d, Sd()_c,)_/)<+oo, Vx,yeX
« d(x,x)=d,, Vxe X
*d(x,y)=d(y,x), Vx,ye X



If in addition

* d(x,y)=d, if and onlyif x=y
» d(x,2)<d(x,y)+d(y,2), Vx,y,z€ X

(triangular inequality)

d is called a metric dissimilarity measure.
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» Similarity measure (between vectors of X) is a
function

ShAMA G e R

with the following properties

«ds, eR: —oo<s()_c,X)SSO<+oo, Vx,yeX

- S(x,x)=s5,, VxeX

s(x,y)=5(y,x), Vx,ye X
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If in addition

e S(x,y)=5,1f and onlyif x=y

o S )s(y,2) <[s(x, y)+s(y,2)Is(x,2), VX, y,z€ X

S is called a metric similarity measure.

e Between sets
Let D;c X, i=1,....,kand U={D,,...,D,}
A proximity measure g on U is a function
. UxU—>R

A dissimilarity measure has to satisfy the relations of
dissimilarity measure between vectors, where D; s are used
in place of x, y (similarly for similarity measures).
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PROXIMITY MEASURES BETWEEN VECTORS

% Real-valued vectors
> Dissimilarity measures (DMs)

o Weighted |, metric DMs
[
dp()_CaJ_/) = (ZWi | x; — ¥, |p)1/p
=l

Interesting instances are obtained for
— P=1 (weighted Manhattan norm)

— P=2 (weighted Euclidean norm)
— p=co (d ,(X,Y)=MaX, i W;|X;-Yi| )
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o Other measures

IR e
- d.(x,y)=—lo 1——2 L
¢ (X, ) glo{ ] = a j

=1y

where b; and a; are the maximum and the minimum
values of the j-th feature, among the vectors of X
(dependence on the current data set)
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» Similarity measures

o Inner product

e Janimoto measure

ST()_CaX): ||x||

[\
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Another similarity measure

dZ(x! Y)
lIxI|+Ilyll

/7

* s.(xy)=1-



% Discrete-valued vectors
> Let F={0,1,...,k-1} be a set of symbols and X={x,...,x\} < F!

> Let A(x.y)=[a;], i, j=0,1,....k-1, where a; is the number of places where
x has the i-th symbol and y has the j-th symbol.
k-1 k-1
=y

NOTE: Tl

J

Several proximity measures can be expressed as combinations of the
elements of A(x,y).

» Dissimilarity measures:

e The Hamming distance (number of places where x and y differ)
k-1 k-1

d,(x,y)=).2 .4,

i=0 j=0
i

e The |, distance /
dl()_c,)_/) = Z| X, =Y |
i=1
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» Similarity measures:

lisl
aii
: - x, i=1
e Tanimoto measure ! s.(x, )= 1 A
n.t+n,— a;
==
k=1 k-1 el Sl
where 7, i Ui
i=1 j=0 =0 j=l

k-1 k—1
o Measures that exclude ag;: Y @, /1 D a;/(I~ay)
i=l

=1

k-1
e Measures that include a,;: > a,/!
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