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Section 6.1

Warming Up




Theorem 6.1

For discrete random variables X and Y, the derived random variable W =
g(X,Y) has PMF

Py (w) = >, Px y(z,y).
(z,y):9(z,y)=w



Example 6.1 Problem

Pr, x(l,z) |x =40 =60 A firm sends out two kinds of newsletters.
=1 0.15 0.1 One kind contains only text and grayscale
g zg 8:?’5 8? images and requires 40 cents to print each

page. The other Kind contains color pic-
tures that cost 60 cents per page. Newsletters can be 1, 2, or 3 pages
long. Let the random variable L represent the length of a newsletter in
pages. S; = {1,2,3}. Let the random variable X represent the cost
in cents to print each page. Sy = {40,60}. After observing many
newsletters, the firm has derived the probability model shown above.
Let W = g(L,X) = LX be the total cost in cents of a newsletter. Find
the range Sy, and the PMF Py (w).




Section 6.2




Better Theorem

A random variable X has a pdf fy(x). Then, the pdf of a derived random
variable Y = g(X) is given by

_ fx (i)
fr) = 9GOl

xi:g(x))=y




T heorem 6.2

If W = aX, where a > 0, then W has CDF and PDF

Fiv(w) = Fx(w/a),  fu(w)=—fx(w/a).



Example 6.3 Problem

The triangular PDF of X is

2 0<z <1,

. (6.7)
0 otherwise.

fx(x) ={

Find the PDF of W = aX. Sketch the PDF of W for a =1/2,1, 2.



Theorem 6.4

If W=X+4b,

Fy (w) = Fx(w —0), fw(w) = fx(w—10).



Example 6.4 Problem

Suppose X is the continuous uniform (-1, 3) random variable and W =
X2, Find the CDF Fy(w) and PDF fy(w).



T heorem 6.5

Let U be a uniform (0,1) random variable and let F(x) denote a cumu-
lative distribution function with an inverse F~1(u) defined for 0 < u < 1.
The random variable X = F~1(U) has CDF Fx(z) = F(x).

Example 6.5 Problem

U is the uniform (0,1) random variable and X = g(U). Derive g(U) such
that X is the exponential (1) random variable.

Example 6.6 Problem

For a uniform (0,1) random variable U, find a function g(-) such that
X = g(U) has a uniform (a,b) distribution.



Quiz 6.2

X is an exponential (\) PDF. Show that Y = v X is a Rayleigh random
variable (see Appendix A.2). Express the Rayleigh parameter a in terms

of the exponential parameter .
Rayleigh (a)

fx(x) = a*x exp(—

2

2
Zx) forx >0

a




Section 6.3

Y = g(X)

with singularity




Example 6.7 Problem

Let X be a random variable with CDF Fx(x). Let Y be the output of a
Clipping circuit, also referred to as a hard limiter, with the characteristic

Y = ¢g(X) where
4

g(x)

1l &< 0
3 x>0.

(6.21)

g(x) = {

0
-5 0 5 5

Express Fy(y) and fy(y) in terms of Fy(x) and fx(x).



Example 6.8 Problem

The output voltage of a microphone is a Gaussian random variable V
with expected value puy = 0 and standard deviation oy = 5 V. The
microphone signal is the input to a soft limiter circuit with cutoff value
+10 V. The random variable W is the output of the limiter:

~10 V < —10,
W=g(V)=_V ~10<V <10, (6.24)
10 V> 10.

What are the CDF and PDF of W7



Quiz 6.3

Random variable X is passed to a hard limiter that outputs Y. The PDF
of X and the limiter output Y are

1—2z/2 0<x<2, X X<1,
fx () {O otherwise, {1 X > 1. ( )

(a) What is the CDF Fy(z)~?
(b) What is P[Y = 1]7

(c) What is Fy(y)?

(d) What is fy(y)?



Section 6.4

W=g(X,Y)




CDF first, PDF later
T heorem 6.6

For continuous random variables X and Y, the CDF of W = g¢(X,Y) is

Fyy(w) =P [W < w] = // fxy(z,y) dedy.
Q(T,IJ)SU‘

Theorem 6.7

For continuous random variables X and Y, the CDF of W = max(X,Y)
IS

w w
Fy(w) = Fx y (w,w) Z/ / fx vy (z,y) drdy.
— 00 J—0C0



Example 6.9 Problem

In Examples 5.7 and 5.9, X and Y have joint PDF

1/15 0<z<5,0<y<3,

. (6.29)
0 otherwise.

fxy(z,y) = {

Find the PDF of W = max(X,Y).



Example 6.10 Problem

X and Y have the joint PDF

Ape~QzHiy) 2> 0 4> 0,

. (6.34)
0 otherwise.

fxy(z,y) = {

Find the PDF of W = Y/X.



Quiz 6.4(B)

Find the CDF and the PDF of W = XY when random variables X and
Y have joint PDF

1 0<2<10=y=<1,

, (6.39)
0O otherwise.

fxy(z,y) = {



Section 6.5

W=X+Y




Theorem 6.8

The PDF of W =X+4Y is

fww)= [~ Ixy@w-a)do= [ fxyw-yy) dy.

Theorem 6.9

When X and Y are independent random variables, the PDF of W = X 4Y
IS

fw@)= [ fxw-pH@d= | ix@ f@w=-2) do.



Example 6.11 Problem

Find the PDF of W = X 4+ Y when X and Y have the joint PDF

2 0<y<l0<z<l,z+y<l,

. (6.43)
0 otherwise.

fxy(z,y) = {



Quiz 6.5

Let X and Y be independent exponential random variables with expected
values E[X] =1/3 and E[Y] =1/2. Find the PDF of W = X 4 Y.



