KECE470 Pattern Recognition

Chang-Su Kim

Many slides are modified from Serigos Theodoridis's own notes.

Course Outline

- Pre-requisites
 - High School Math
 - or Common Sense
- Course Homepage
 - Homepage: <u>http://mcl.korea.ac.kr</u>
- Questions
 - You are welcome to come to my office (Engineering Bldg, Rm 508) and ask any questions any time
 - Tel: 02-3290-3217
 - Email: <u>changsukim@korea.ac.kr</u>

Course Outline

- Assessment Methods
 - Assignments & Attendance: 30%
 - Small coding projects
 - Problem solving assignments
 - Mid-term Exam: 30%
 - Final Exam: 40%
- Textbook and References
 - Sergios Theodoridis and Konstantinos Koutroumbas, Pattern Recognition, 4th edition, Academic Press, 2009
 - E-book: <u>http://www.sciencedirect.com/science/book/9781597492720</u>, freely accessible in Korea University
 - Sergios Theodoridis, *Machine Learning: A Bayesian and Optimization Perspective*, Academic Press, 2015
 - E-book: <u>http://www.sciencedirect.com/science/book/9780128015223</u>, freely accessible in Korea University

Tentative Course Outline

Week	Topics	Events
1	Introduction	
2	Bayesian Decision	
3	Bayesian Decision	
4	Linear Classifiers	
5	Linear Classifiers	
6	Nonlinear Classifiers	
7	N/A	Mid exam (12 OCT 2016)
8	Nonlinear Classifiers & Deep Learning	
9	Deep Learning	
10	Feature Extraction	
11	Feature Extraction	
12	Context-Dependent Classification	
13	Clustering	
14	Clustering	
15	Clustering	
16	N/A	Final exam (12 DEC 2015)

What is pattern recognition?

- Its goal is to classify objects into a number of classes (or categories)
 - Objects are called patterns

• Ex 1) Machine vision (computer vision)

• Ex 2) Character recognition

• Ex 3) Computer-aided diagnosis

77 year old woman with ill-defined, irregular mass (left shows mammogram with radiologist's hand-drawn outline of lesion). CAD detects the mass as well as generating 2 false positives in this image (right).

• Ex 4) Speech recognition

• Ex 5) State-of-the-art segmentation (2016)

• Ex 5) State-of-the-art tracking (2016)

CDT: Cooperative Detection and Tracking for Tracking Multiple Objects in Video Sequences - Supplementary material -

> Anonymous ECCV submission Paper ID: 1293

Terminology

An example:

(a) benign legion

(b) malignant legion (cancer)

- **Features:** measurable quantities obtained from patterns
 - The classification task is based on their values.
- Feature vector: a number of features x_1, \dots, x_l constitute the feature vector $\mathbf{x} = [x_1, \dots, x_l]^T$
- A **classifier** divides the feature space into regions that correspond to the classes.
- Decision line
- Training patterns
- Test patterns

Design of Classification System

The basic stages involved in the design of a classification system.

Supervised vs Unsupervised

- Supervised learning (supervised pattern recognition)
 - Patterns, whose classes are known *a priori*, are used for training
- Unsupervised learning (unsupervised pattern recognition, clustering)
 - The number of classes is unknown in general and no training pattern is available
 - Find underlying similarities and group similar vectors together

Example of Unsupervised Learning (Clustering)

Supplementary Video

Multiple Random Walkers and Their Applications to Clustering

Anonymous CVPR Submission

Paper ID 950