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Classification Problem

• There are 𝑀 classes: 𝜔1, … , 𝜔𝑀

• Given a pattern with feature vector 𝐱, 

classify it into one of the classes



BAYESIAN CLASSIFICATION



Bayesian Classification Rule

• Classify 𝐱 into 𝜔𝑖 if                               (1)    

𝑃 𝜔𝑖 𝐱 > 𝑃 𝜔𝑗 𝐱

for all 𝑗



Bayesian Classification Rule

• Classify 𝐱 into 𝜔𝑖∗ where                        (2)

𝑖∗ = argmax
𝑖

𝑃 𝜔𝑖 𝐱

– 𝑃(𝜔𝑖): 𝑎 𝑝𝑟𝑖𝑜𝑟𝑖 probability

– 𝑃 𝜔𝑖 𝐱 : a posteriori probability

– 𝑃 𝐱 𝜔𝑖 : likelihood of 𝜔𝑖 with respect to 𝐱

– Bayesian decision is also called maximum a 

posteriori (MAP) decision



Bayesian Classification Rule

• Bayes rule

𝑃 𝜔𝑖 𝐱 =
𝑃 𝐱 𝜔𝑖 𝑃(𝜔𝑖)

𝑃 𝐱
=

𝑃 𝐱 𝜔𝑖 𝑃(𝜔𝑖)

σ𝑗 𝑃 𝐱 𝜔𝑗 𝑃(𝜔𝑗)

• Classify 𝐱 into 𝜔𝑖∗ where                                     (3)

𝑖∗ = argmax
𝑖

𝑃 𝐱 𝜔𝑖 𝑃(𝜔𝑖)

• When all prior probabilities are identical, this 
becomes
– Classify 𝐱 into 𝜔𝑖∗ where

𝑖∗ = argmax
𝑖

𝑃 𝐱 𝜔𝑖

– This is the maximum likelihood (ML) decision



Bayesian Classification Rule



Bayesian classifier minimizes 

classification error probability

• Two-class problem 

– Classification error probability

𝑃𝑒 = 𝑃 𝐱 ∈ 𝑅2, 𝜔1 + 𝑃 𝐱 ∈ 𝑅1, 𝜔2

– To minimize 𝑃𝑒 ,

𝑅1 = {𝐱: 𝑃 𝜔1 𝐱 > 𝑃 𝜔2 𝐱 }
𝑅2 = {𝐱: 𝑃 𝜔1 𝐱 < 𝑃 𝜔2 𝐱 }

• The Bayesian classifier is optimal in that it 

minimizes 𝑃𝑒



Minimizing Risk

• Medical doctor’s problem

– False negative is more critical than false positive

• Loss (or penalty term) 𝜆𝑖𝑗
– The penalty for classifying a pattern in 𝜔𝑖 into 𝜔𝑗

• Loss matrix 𝐿 = [𝜆𝑖𝑗]



Minimizing Risk

• Risk in two-class problem (assuming 𝜆𝑖𝑖 = 0)

𝑟 = 𝜆12𝑃(𝜔1) 𝑅2
𝑃 𝐱 𝜔1 𝑑𝐱+𝜆21𝑃(𝜔2) 𝑅1

𝑃 𝐱 𝜔2 𝑑𝐱

• Risk minimizing decision rule (further assuming 

𝑃 𝜔1 = 𝑃(𝜔2))

– Assign 𝑥 into 𝜔2 if

𝑃 𝐱 𝜔2 > 𝑃 𝐱 𝜔1

𝜆12
𝜆21

– This becomes identical with the Bayesian classifier if 

𝜆12 = 𝜆21





Discriminant Functions and 

Decision Surfaces

• If 𝑅𝑖 , 𝑅𝑗 are contiguous, they are separated by a 

decision surface

𝑃 𝜔𝑖 𝐱 − 𝑃 𝜔𝑗 𝐱 = 0

• Equivalently, the decision surface is given by 

𝑔𝑖 𝐱 − 𝑔𝑗 𝐱 = 0

where 𝑔𝑖 𝐱 ≡ 𝑓 𝑃 𝜔𝑖 𝐱 is a discriminant    

function and 𝑓 is monotonically increasing



Bayesian Classification for Normal 

Distributions

• Multivariate Gaussian PDF

𝑃 𝐱 =
1

2𝜋
𝑙
2 Σ

1
2

exp −
1

2
𝐱 − 𝛍 𝑇Σ−1 𝐱 − 𝛍

where 𝛍 = 𝐸 𝐱 is the mean vector        

Σ = 𝐸 𝐱 − 𝛍 𝐱 − 𝛍 𝑇 is the covariance 

matrix



Bayesian Classification for Normal 

Distributions

• Multivariate Gaussian PDF

Σ =
3 0
0 3



Bayesian Classification for Normal 

Distributions

• Multivariate Gaussian PDF

Σ =
15 0
0 3



Bayesian Classification for Normal 

Distributions

• Multivariate Gaussian PDF

Σ =
3 0
0 15



Bayesian Classification for Normal 

Distributions

• Multivariate Gaussian PDF

Σ =
15 6
6 3



Bayesian Classification for Normal 

Distributions

• Discriminant function
𝑔𝑖 𝐱 = log 𝑃( 𝐱 𝜔𝑖 𝑃 𝜔𝑖

= −
1

2
𝐱 − 𝛍𝑖

𝑇Σ𝑖
−1 𝐱 − 𝛍𝑖 + 𝐶𝑖

• Thus, decision surfaces are quadrics 

(ellipsoids, parabolas, hyperbolas, and 

pairs of lines)



Bayesian Classification for Normal 

Distributions



Bayesian Classification for Normal 

Distributions



Special Case I: Σ𝑖 = 𝜎2I

• Decision hyperplane

𝑔𝑖𝑗 𝐱 = 𝐰𝑇 𝐱 − 𝐱0 = 0

– 𝐰𝑇 = 𝛍𝑖 − 𝛍𝑗

– 𝐱0 =
1

2
𝛍𝑖 + 𝛍𝑗 − 𝜎2 ln

𝑃 𝜔𝑖

𝑃 𝜔𝑗

𝛍𝑖−𝛍𝑗

𝛍𝑖−𝛍𝑗
𝟐



Special Case I: Σ𝑖 = 𝜎2I



Special Case II: Σ𝑖 = Σ

• Decision hyperplane

𝑔𝑖𝑗 𝐱 = 𝐰𝑇 𝐱 − 𝐱0 = 0

– 𝐰𝑇 = Σ−1(𝛍𝑖 − 𝛍𝑗)

– 𝐱0 =
1

2
𝛍𝑖 + 𝛍𝑗 − 𝜎2 ln

𝑃 𝜔𝑖

𝑃 𝜔𝑗

𝛍𝑖−𝛍𝑗

𝛍𝑖−𝛍𝑗 𝚺−𝟏 𝛍𝑖−𝛍𝑗

Assignment #1. Prove this.



Special Case II: Σ𝑖 = Σ



Minimum Distance Classifiers

• Assuming equiprobable classes, maximize

𝑔𝑖 𝑥 = −
1

2
𝐱 − 𝛍𝑖

𝑇Σ𝑖
−1 𝐱 − 𝛍𝑖

– Σ𝑖 = 𝜎2I: minimize the Euclidean distance

𝐱 − 𝛍𝑖
– Σ𝑖 = Σ: minimize the Mahalanobis distance

𝐱 − 𝛍𝑖
𝑇Σ𝑖

−1 𝐱 − 𝛍𝑖

1
2



Minimum Distance Classifiers



Minimum Distance Classifiers



Minimum Distance Classifiers



PARAMETRIC ESTIMATION OF 

UNKNOWN PDF



ML Parameter Estimation

• Let 𝐱1, 𝐱2, … , 𝐱𝑁 be independent feature vectors, 

and 𝑋 = {𝐱1, 𝐱2, … , 𝐱𝑁}

• Assume that feature vectors have the PDF  

𝑃 𝐱|𝛉 with unknown parameters 𝛉

• 𝑃 𝑋|𝛉 ≡ 𝑃 𝐱1, 𝐱2, … , 𝐱𝑁|𝛉 = ς𝑘=1
𝑁 𝑃 𝐱𝑘|𝛉

• 𝛉ML = argmax
𝛉

ς𝑘=1
𝑁 𝑃 𝐱𝑘|𝛉

• A necessary condition

– 𝐿(𝛉) ≡ ln𝑃 𝑋|𝛉 = σ𝑘=1
𝑁 ln 𝑃 𝐱𝑘|𝛉

–
𝜕𝐿(𝛉)

𝜕𝛉
= σ𝑘=1

𝑁 1

𝑃 𝐱𝑘;𝛉

𝜕𝑃 𝐱𝑘;𝛉

𝜕𝛉
= 𝟎



ML Parameter Estimation

• Properties of the ML estimate

– Asymptotically unbiased

lim
𝑁→∞

𝐸 𝛉ML = 𝛉true

– Asymptotically consistent

lim
𝑁→∞

𝐸 𝛉ML − 𝛉true
2
= 0



ML Parameter Estimation

• Example 2.3

– Assume that 𝑁 data points 𝑥1, 𝑥2, … , 𝑥𝑁 have been 

generated by a 1D Gaussian PDF of a known mean 𝜇
but of a unknown variance. Derive the ML estimate of 

the variance. 



ML Parameter Estimation

• Example 2.4

– Assume that 𝑁 data points 𝐱1, 𝐱2, … , 𝐱𝑁 have been 

generated by a Gaussian PDF of a known covariance 

matrix Σ but of a unknown mean vector. Derive the ML 

estimate of the mean vector. 



MAP Parameter Estimation

• 𝑋 = {𝐱1, 𝐱2, … , 𝐱𝑁}

• 𝑃 𝛉 𝑋 =
𝑃 𝛉 𝑃(𝑋|𝛉)

𝑃 𝑋

• 𝛉MAP= argmax
𝛉

𝑃 𝛉 𝑋



MAP Parameter Estimation

• Example 2.5

– Assume that 𝑁 data points 𝐱1, 𝐱2, … , 𝐱𝑁 have been 

generated by a Gaussian PDF of a known covariance 

matrix Σ but of a unknown mean vector 𝛍. It is, 

however, known that 

𝑃 𝛍 =
1

2𝜋 𝑙/2𝜎𝜇
𝑙 exp(−

1

2

𝛍 − 𝛍0
2

𝜎𝜇
2

)

Derive the MAP estimate of the mean vector. 



NONPARAMETRIC

ESTIMATION OF UNKNOWN 

PDF



Nonparametric Estimation

• PDF approximation by the histogram method 

with (a) small and (b) large intervals (bins)

• 𝑃 𝑥 =
1

ℎ

𝑘𝑁

𝑁



Nonparametric Estimation

• 𝑃 𝑥 converges to the true 𝑃(𝑥) if

 ℎ → 0

 𝑘𝑁 → ∞


𝑘𝑁

𝑁
→ 0



Parzen Windows

• An example (histogram method)

– 𝜑 𝐱 = ൝
1 𝑥𝑖 ≤

1

2

0 otherwise

– 𝑃 𝐱 =
1

ℎ𝑙
1

𝑁
σ𝑖=1
𝑁 𝜑

𝐱𝑖−𝐱

ℎ

• In general, we use kernels or 

Parzen windows 𝜑 𝐱 such that

– 𝜑 𝐱 > 𝟎

– 𝐱 𝜑 𝐱 𝑑𝐱 = 1



Parzen Windows

• Unbiased only 

if ℎ → 0

• Smaller h ⇒
– More accurate

– Less smooth

– Higher 

variance

– Less consistent

• Bigger N

– Smoother

– Smaller 

variance

– More 

consistent



Parzen Windows
Curse of 

dimensionality

• For a large 𝑙, the 

number of data, 𝑁,
for reliable PDF 

estimation 

becomes 

impractically high.



𝑘-NN Density Estimation

𝑃 𝑥 =
𝑘

𝑁𝑉 𝑥



ETC



Naive-Bayes Classifier

• Independence Assumption

𝑃 𝐱 𝜔𝑖 =ෑ

𝑗=1

𝑙

𝑃 𝑥𝑗 𝜔𝑖

• Bayesian Classification

𝜔∗ = argmax
𝜔𝑖

ෑ

𝑗=1

𝑙

𝑃 𝑥𝑗 𝜔𝑖



𝑘-NN Classification

1. Out of the 𝑁 training vectors, identify the 𝑘
nearest neighbors.

2. Inspect these 𝑘 vectors to determine the 

number of vectors 𝑘𝑗 in the class 𝜔𝑗 .

3. Assign 𝑥 to 𝜔𝑖 if 𝑘𝑖 > 𝑘𝑗 , ∀𝑗 ≠ 𝑖

𝑘 = 11



𝑘-NN Classification

• The simplest version 𝑘 = 1 is known as the NN 

rule. 

• It can be shown that, as 𝑁 → ∞, 

𝑃𝐵 ≤ 𝑃𝑁𝑁 ≤ 2𝑃𝐵
• Voronoi tessellation

𝑅𝑖 = {𝐱: 𝑑 𝐱, 𝐱𝑖 < 𝑑 𝐱, 𝐱𝑗 , 𝑖 ≠ 𝑗}



Bayesian Networks

• Bayesian network

– directed acyclic graph (DAG)

– Each node is associated with a 

conditional probability, 𝑃 𝑥𝑖 𝐴𝑖
• 𝑥𝑖 : the corresponding feature 

• 𝐴𝑖: the set of its parents

– 𝑥𝑖 is conditionally independent of 

any combination of its non-

descendants, given its parents



Bayesian Networks



Bayesian Networks

• Compute 

a. 𝑃 𝑧1 𝑥1 = 𝑃(𝑧 = 1|𝑥 = 1)

b. 𝑃(𝑤0|𝑥1)

c. 𝑃(𝑥0|𝑤1)


