Normal Distributions

- $\quad P(\mathbf{x}) \sim N(\boldsymbol{\mu}, \Sigma)$

$$
P(\mathbf{x})=\frac{1}{(2 \pi)^{\frac{l}{2}}|\Sigma|^{\frac{1}{2}}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)
$$

where $\boldsymbol{\mu}=E[\mathbf{x}]$ and $\Sigma=E\left[(\mathbf{x}-\boldsymbol{\mu})(\mathbf{x}-\boldsymbol{\mu})^{T}\right]$

- $\quad \Sigma$ is symmetric and positive definite, and thus its eigenvalue decomposition

$$
\Sigma=\mathrm{Q} \Lambda \mathrm{Q}^{T}
$$

is possible

- A contour line of equal probability density

$$
(\mathbf{x}-\boldsymbol{\mu})^{T} \Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu})=1
$$

- It is a hyper-ellipsoid
- Its principal axes are given by the eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{l}$ of Σ
- Its axes have lengths $\sqrt{\lambda_{1}}, \ldots, \sqrt{\lambda_{l}}$
- The main axis with length $\sqrt{\lambda_{1}}$ is in the direction of \mathbf{v}_{1}

