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Linear Classifiers
• Linear classifiers are simple and computationally 

attractive
• Linear discriminant functions → linear decision 

surfaces (decision hyperplanes)

𝑔𝑔 𝐱𝐱 = 𝐰𝐰𝑇𝑇𝐱𝐱 + 𝑤𝑤0 = 0
⇔ 𝐰𝐰𝑇𝑇 𝐱𝐱 − 𝐱𝐱0 = 0



PERCEPTRON ALGORITHM



Linearly Separable Case
• There exists a hyperplane, 𝐰𝐰∗𝑇𝑇𝐱𝐱 = 0, such that

𝐰𝐰∗𝑇𝑇𝐱𝐱 > 0 ∀𝐱𝐱 ∈ 𝜔𝜔1
𝐰𝐰∗𝑇𝑇𝐱𝐱 < 0 ∀𝐱𝐱 ∈ 𝜔𝜔2

– This formulation also covers the case of a hyperplane 
not crossing the origin, i.e.,𝐰𝐰∗𝑇𝑇𝐱𝐱 + 𝑤𝑤0∗=0, by defining 
the extended (𝑙𝑙 + 1)-dimensional vectors 

𝐱𝐱′ ≡ [𝐱𝐱𝑇𝑇 , 1]𝑇𝑇 and 𝐰𝐰′ ≡ [𝐰𝐰∗𝑇𝑇 , 𝑤𝑤0∗]𝑇𝑇. 
– Then𝐰𝐰∗𝑇𝑇𝐱𝐱 + 𝑤𝑤0∗ = 𝐰𝐰′𝑇𝑇𝐱𝐱′



Problem Formulation: Perceptron Cost

𝐽𝐽 𝐰𝐰 = �
𝐱𝐱∈𝑌𝑌

(𝛿𝛿𝑥𝑥𝐰𝐰𝑇𝑇𝐱𝐱)

• 𝑌𝑌 is the set of vectors, misclassified by the 
hyperplane 𝐰𝐰

• The variable 𝛿𝛿𝑥𝑥
𝛿𝛿𝑥𝑥 = �−1 if 𝑥𝑥 ∈ 𝜔𝜔1

+1 if 𝑥𝑥 ∈ 𝜔𝜔2

• For separating 𝐰𝐰, 𝐽𝐽 𝐰𝐰 = 0 because 𝑌𝑌 = ∅
• 𝐽𝐽 𝐰𝐰 is continuous and piecewise linear



Optimization: Perceptron Algorithm

• Inspired by gradient descent

𝐰𝐰 𝑡𝑡 + 1 = 𝐰𝐰 𝑡𝑡 − 𝜌𝜌𝑡𝑡 �
𝜕𝜕𝐽𝐽 𝐰𝐰
𝜕𝜕𝐰𝐰 𝐰𝐰=𝐰𝐰(𝑡𝑡)

• Note that 𝜕𝜕𝜕𝜕(𝐰𝐰)
𝜕𝜕𝐰𝐰

= ∑𝐱𝐱∈𝑌𝑌 𝛿𝛿𝑥𝑥𝐱𝐱. Thus, we have

𝐰𝐰 𝑡𝑡 + 1 = 𝐰𝐰 𝑡𝑡 − 𝜌𝜌𝑡𝑡�
𝐱𝐱∈𝑌𝑌

𝛿𝛿𝑥𝑥𝐱𝐱



Perceptron Algorithm
 Choose 𝐰𝐰 0 randomly
 Choose 𝜌𝜌0
 𝑡𝑡 = 0
 Repeat

• 𝑌𝑌 = ∅
• For 𝑖𝑖 = 1 to 𝑁𝑁

If 𝛿𝛿𝐱𝐱𝑖𝑖𝐰𝐰(𝑡𝑡)𝑇𝑇𝐱𝐱𝑖𝑖 ≥ 0 then 𝑌𝑌 = 𝑌𝑌 ∪ 𝐱𝐱𝑖𝑖
• End For
• 𝐰𝐰 𝑡𝑡 + 1 = 𝐰𝐰 𝑡𝑡 − 𝜌𝜌𝑡𝑡

𝜕𝜕𝜕𝜕(𝐰𝐰)
𝜕𝜕𝐰𝐰

|𝐰𝐰=𝐰𝐰(𝑡𝑡)
• Adjust 𝜌𝜌𝑡𝑡
• 𝑡𝑡 = 𝑡𝑡 + 1

 Until 𝑌𝑌 = ∅



Perceptron Algorithm
• Remark

– It converges to a solution in a finite number of steps, 
provided that 𝜌𝜌𝑡𝑡 ∝

1
𝑡𝑡

(proof skipped)

𝐰𝐰 𝑡𝑡 is updated to 𝐰𝐰 𝑡𝑡 + 1 to include 𝐱𝐱



Perceptron Algorithm



Terminology
If 𝐰𝐰𝑇𝑇𝐱𝐱 + 𝑤𝑤0 > 0 assign 𝐱𝐱 to 𝜔𝜔1
If 𝐰𝐰𝑇𝑇𝐱𝐱 + 𝑤𝑤0 < 0 assign 𝐱𝐱 to 𝜔𝜔2

• Perceptron or neuron
• Synaptic weights or synapses
• Activation function: e.g. 𝑓𝑓 𝑥𝑥 = 2𝛿𝛿 𝑥𝑥 − 1



Variants
• Reward and punishment schemes

– Training vectors enter the algorithm cyclically
𝐰𝐰 𝑡𝑡 + 1 = 𝐰𝐰 𝑡𝑡 + 𝜌𝜌𝐱𝐱(𝑡𝑡) if 𝐱𝐱(𝑡𝑡) ∈ 𝜔𝜔1 and 𝐰𝐰𝑇𝑇 𝑡𝑡 𝐱𝐱(𝑡𝑡) ≤ 0
𝐰𝐰 𝑡𝑡 + 1 = 𝐰𝐰 𝑡𝑡 − 𝜌𝜌𝐱𝐱(𝑡𝑡) if 𝐱𝐱(𝑡𝑡) ∈ 𝜔𝜔2 and 𝐰𝐰𝑇𝑇 𝑡𝑡 𝐱𝐱(𝑡𝑡) ≥ 0
𝐰𝐰 𝑡𝑡 + 1 = 𝐰𝐰 𝑡𝑡 otherwise



Variants
• Pocket Algorithm

– Converges to an optimal solution, even if not 
linearly separable

 Initialize the weight vector 𝐰𝐰(0) randomly. Define 
a stored (in the pocket!) vector 𝐰𝐰𝑠𝑠. Set a history 
counter ℎ𝑠𝑠 of 𝐰𝐰𝑠𝑠 to zero.
 At the 𝑡𝑡-th iteration step, update 𝐰𝐰 𝑡𝑡 + 1

according to the perceptron rule. Use 𝐰𝐰 𝑡𝑡 + 1 to 
test the number ℎ of training vectors correctly 
classified. If ℎ > ℎ𝑠𝑠 replace 𝐰𝐰𝑠𝑠 with 𝐰𝐰 𝑡𝑡 + 1 and 
ℎ𝑠𝑠 with ℎ. Continue the iterations.



𝑀𝑀-class Case
• Naïve approach I



𝑀𝑀-class Case
• Naïve approach II



𝑀𝑀-class Case
• Linear Machine

– Define 𝑀𝑀 linear discriminant 
functions 𝑔𝑔𝑖𝑖(𝐱𝐱)

– Assign 𝐱𝐱 to 𝜔𝜔𝑖𝑖 if 𝑔𝑔𝑖𝑖 𝐱𝐱 ≥
𝑔𝑔𝑗𝑗(𝐱𝐱) for all 𝑗𝑗

• If 𝑅𝑅𝑖𝑖 and 𝑅𝑅𝑗𝑗 are contiguous, 
the boundary is given by 
the hyperplane 

𝑔𝑔𝑖𝑖 𝐱𝐱 = 𝑔𝑔𝑗𝑗(𝐱𝐱)



Kesler’s Construction
• Generalization to 𝑀𝑀-class task

– Define a linear discriminant function 𝐰𝐰𝑖𝑖, 𝑖𝑖 = 1,2, … ,𝑀𝑀, for each 
class. Classify a feature vector 𝐱𝐱 into class 𝜔𝜔𝑖𝑖 if

𝐰𝐰𝑖𝑖
𝑇𝑇𝐱𝐱 > 𝐰𝐰𝑗𝑗𝑇𝑇𝐱𝐱, ∀𝑗𝑗 ≠ 𝑖𝑖

– For each training vector from class 𝜔𝜔𝑖𝑖 , construct 𝑀𝑀 − 1 vectors 
𝐱𝐱𝑖𝑖𝑗𝑗 = [0𝑇𝑇 , 0𝑇𝑇 , … , 𝐱𝐱𝑇𝑇 , … ,−𝐱𝐱𝑇𝑇 , … , 0𝑇𝑇]𝑇𝑇 . It is a block vector, having 
zeros everywhere except at the 𝑖𝑖th and 𝑗𝑗th block positions, 
where it has 𝐱𝐱 and −𝐱𝐱, respectively.

– Also construct the block vector 𝐰𝐰 = [𝐰𝐰1
𝑇𝑇 , … , 𝐰𝐰𝑀𝑀

𝑇𝑇 ]𝑇𝑇 . 
– If 𝐱𝐱 ∈ 𝜔𝜔𝑖𝑖 , this imposes the requirement that 𝐰𝐰𝑇𝑇𝐱𝐱𝑖𝑖𝑗𝑗 > 0,∀𝑗𝑗 ≠ 𝑖𝑖. 
– The task now is to design a linear classifier, in the extended 

space, so that each extended training vector lies in its positive 
side.
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