KECE470 Pattern Recognition

Chapter 3. Linear Classifiers

Chang-Su Kim

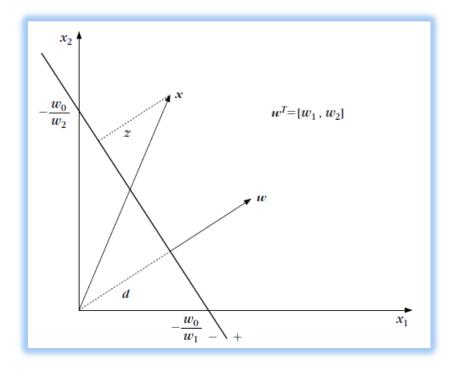
Many slides are modified from Serigos Theodoridis's own notes.

Linear Classifiers

- Linear classifiers are simple and computationally attractive
- Linear discriminant functions → linear decision surfaces (decision hyperplanes)

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0 = 0$$

$$\Leftrightarrow \mathbf{w}^T (\mathbf{x} - \mathbf{x}_0) = 0$$



PERCEPTRON ALGORITHM

Linearly Separable Case

- There exists a hyperplane, $\mathbf{w}^{*T}\mathbf{x} = 0$, such that $\mathbf{w}^{*T}\mathbf{x} > 0 \quad \forall \mathbf{x} \in \omega_1$ $\mathbf{w}^{*T}\mathbf{x} < 0 \quad \forall \mathbf{x} \in \omega_2$
 - This formulation also covers the case of a hyperplane not crossing the origin, *i.e.*, $\mathbf{w}^{*T}\mathbf{x} + w_0^* = 0$, by defining the **extended** (l + 1)-dimensional vectors

 $\mathbf{x}' \equiv [\mathbf{x}^T, 1]^T$ and $\mathbf{w}' \equiv [\mathbf{w}^{*T}, w_0^*]^T$. - Then $\mathbf{w}^{*T}\mathbf{x} + w_0^* = \mathbf{w}'^T\mathbf{x}'$ Problem Formulation: Perceptron Cost

$$J(\mathbf{w}) = \sum_{\mathbf{x} \in Y} (\delta_x \mathbf{w}^T \mathbf{x})$$

- *Y* is the set of vectors, misclassified by the hyperplane **w**
- The variable δ_x

$$\delta_x = \begin{cases} -1 & \text{if } x \in \omega_1 \\ +1 & \text{if } x \in \omega_2 \end{cases}$$

- For separating \mathbf{w} , $J(\mathbf{w}) = 0$ because $Y = \emptyset$
- $J(\mathbf{w})$ is continuous and piecewise linear

Optimization: Perceptron Algorithm

• Inspired by gradient descent

$$\mathbf{w}(t+1) = \mathbf{w}(t) - \rho_t \frac{\partial J(\mathbf{w})}{\partial \mathbf{w}} \bigg|_{\mathbf{w} = \mathbf{w}(t)}$$

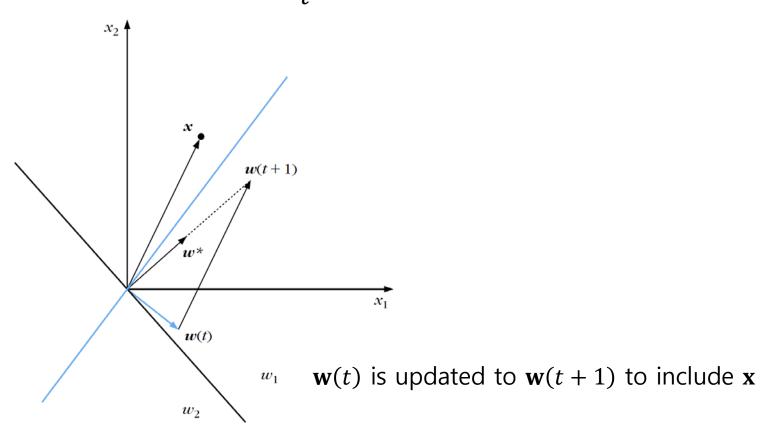
• Note that $\frac{\partial J(\mathbf{w})}{\partial \mathbf{w}} = \sum_{\mathbf{x} \in Y} \delta_x \mathbf{x}$. Thus, we have $\mathbf{w}(t+1) = \mathbf{w}(t) - \rho_t \sum_{\mathbf{x} \in Y} \delta_x \mathbf{x}$

Perceptron Algorithm

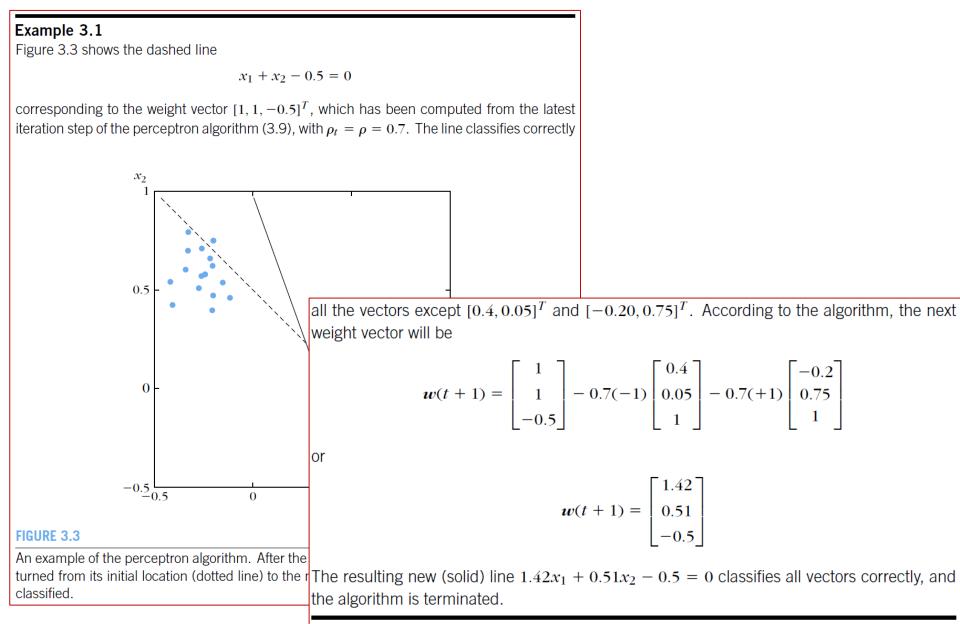
- Choose w(0) randomly
- Choose ρ_0
- t = 0
- Repeat
 - $Y = \emptyset$
 - For i = 1 to NIf $\delta_{\mathbf{x}_i} \mathbf{w}(t)^T \mathbf{x}_i \ge 0$ then $Y = Y \cup {\mathbf{x}_i}$
 - End For
 - $\mathbf{w}(t+1) = \mathbf{w}(t) \rho_t \frac{\partial J(\mathbf{w})}{\partial \mathbf{w}}|_{\mathbf{w}=\mathbf{w}(t)}$
 - Adjust ρ_t
 - t = t + 1
- Until $Y = \emptyset$

Perceptron Algorithm

- Remark
 - It converges to a solution in a finite number of steps, provided that $\rho_t \propto \frac{1}{r}$ (proof skipped)

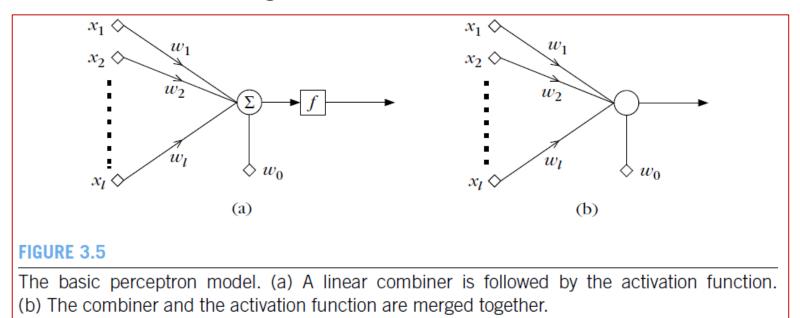


Perceptron Algorithm



Terminology

If $\mathbf{w}^T \mathbf{x} + w_0 > 0$ assign \mathbf{x} to ω_1 If $\mathbf{w}^T \mathbf{x} + w_0 < 0$ assign \mathbf{x} to ω_2



- **Perceptron** or **neuron**
- Synaptic weights or synapses
- Activation function: *e.g.* $f(x) = 2\delta(x) 1$

Variants

- Reward and punishment schemes
 - Training vectors enter the algorithm cyclically $\mathbf{w}(t+1) = \mathbf{w}(t) + \rho \mathbf{x}_{(t)}$ if $\mathbf{x}_{(t)} \in \omega_1$ and $\mathbf{w}^T(t)\mathbf{x}_{(t)} \leq 0$ $\mathbf{w}(t+1) = \mathbf{w}(t) - \rho \mathbf{x}_{(t)}$ if $\mathbf{x}_{(t)} \in \omega_2$ and $\mathbf{w}^T(t)\mathbf{x}_{(t)} \geq 0$
 - $\mathbf{w}(t+1) = \mathbf{w}(t)$ otherwise

Example 3.2

Figure 3.4 shows four points in the two-dimensional space. Points (-1, 0), (0, 1) belong to class ω_1 , and points (0, -1), (1, 0) belong to class ω_2 . The goal of this example is to design a linear classifier using the perceptron algorithm in its reward and punishment form. The parameter ρ is set equal to one, and the initial weight vector is chosen as $w(0) = [0, 0, 0]^T$ in the extended three-dimensional space. According to (3.21)–(3.23), the following computations are in order:

 x_2

1

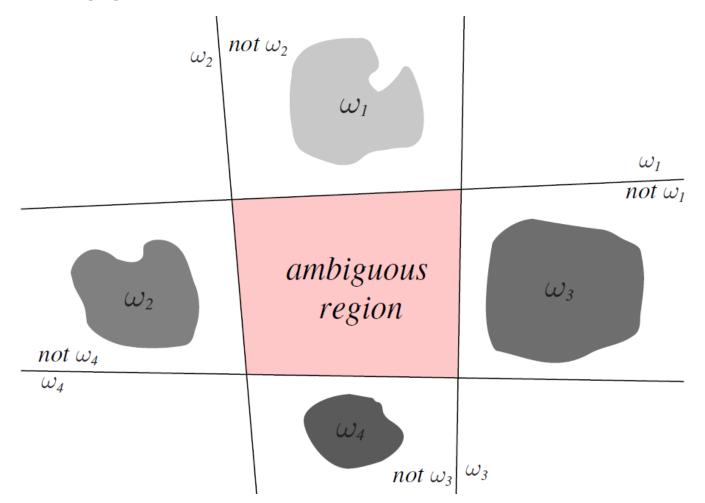
 $^{-1}$

Variants

- Pocket Algorithm
 - Converges to an optimal solution, even if not linearly separable
 - Initialize the weight vector w(0) randomly. Define a stored (in the pocket!) vector w_s. Set a history counter h_s of w_s to zero.
 - At the *t*-th iteration step, update w(*t* + 1) according to the perceptron rule. Use w(*t* + 1) to test the number *h* of training vectors correctly classified. If *h* > *h_s* replace w_s with w(*t* + 1) and *h_s* with *h*. Continue the iterations.

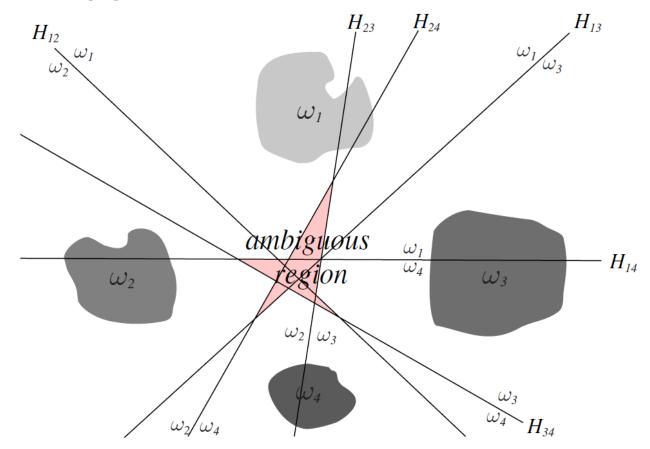
M-class Case

• Naïve approach I



M-class Case

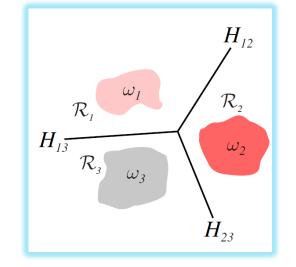
• Naïve approach II

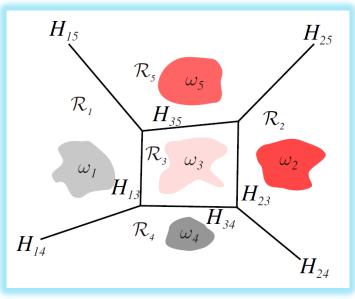


M-class Case

- Linear Machine
 - Define *M* linear discriminant functions $g_i(\mathbf{x})$
 - Assign **x** to ω_i if $g_i(\mathbf{x}) \ge g_j(\mathbf{x})$ for all j
- If R_i and R_j are contiguous, the boundary is given by the hyperplane

 $g_i(\mathbf{x}) = g_j(\mathbf{x})$





Kesler's Construction

- Generalization to *M*-class task
 - Define a linear discriminant function \mathbf{w}_i , i = 1, 2, ..., M, for each class. Classify a feature vector \mathbf{x} into class ω_i if

$$\mathbf{w}_i^T \mathbf{x} > \mathbf{w}_j^T \mathbf{x}, \, \forall j \neq i$$

- For each training vector from class ω_i , construct M 1 vectors $\mathbf{x}_{ij} = [0^T, 0^T, \dots, \mathbf{x}^T, \dots, -\mathbf{x}^T, \dots, 0^T]^T$. It is a block vector, having zeros everywhere except at the *i*th and *j*th block positions, where it has \mathbf{x} and $-\mathbf{x}$, respectively.
- Also construct the block vector $\mathbf{w} = [\mathbf{w}_1^T, ..., \mathbf{w}_M^T]^T$.
- If $\mathbf{x} \in \omega_i$, this imposes the requirement that $\mathbf{w}^T \mathbf{x}_{ij} > 0, \forall j \neq i$.
- The task now is to design a linear classifier, in the extended space, so that each extended training vector lies in its positive side.