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Chapter 3. Linear Classifiers
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Many slides are modified from Serigos Theodoridis's own notes.



Linear Classifiers

 Linear classifiers are simple and computationally
attractive

e Linear discriminant functions — linear decision
surfaces (decision hyperplanes)
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PERCEPTRON ALGORITHM



Linearly Separable Case

 There exists a hyperplane, w*Ix = 0, such that
wlx >0 VX € w,q
wlx <0 Vx € w,

— This formulation also covers the case of a hyperplane
not crossing the origin, i.e., w*'x + wg=0, by defining
the extended (I + 1)-dimensional vectors

x' = [xI,1]F and w' = [w*T, wi]t.

— Thenw*'x + wi = w'Tx’



Problem Formulation: Perceptron Cost

Jw) = ) (6,WTX)
XeY

* Y is the set of vectors, misclassified by the

hyperplane w
* The variable §,
( .
5x=<—1 if x € wq

+1 ifx € w,

* For separatingw, J(w) = 0 becauseY =0
» J(w) is continuous and piecewise linear



Optimization: Perceptron Algorithm

 |nspired by gradient descent

Wit +1) = w(e) - p, L

w=w(t)

* Note that % = ).vev 0X. Thus, we have

w(t +1) = w(t) — p, Z 5.X

XeY



Perceptron Algorithm

Choose w(0) randomly
Choose p,

e Fori=1to N

If 6, w(t)Tx; = 0thenY =Y U {x;}
e End For
s w(t+1)=w(t) —pr——
o Adjust p;
e t=t+1
UntilY = ¢

d]
(w) lw=w(t)



Perceptron Algorithm

e Remark
— It converges to a solution in a finite number of steps,
provided that p; x % (proof skipped)

X5 A

w(t) is updated to w(t + 1) to include x



Perceptron Algorithm

Example 3.1
Figure 3.3 shows the dashed line

xXp+az—05=0

corresponding to the weight vector [1, 1, —0.5]7, which has been computed from the latest
iteration step of the perceptron algorithm (3.9), with p; = p = 0.7. The line classifies correctly
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all the vectors except [0.4,0.05]7 and [—0.20,0.75]7. According to the algorithm, the next
"~ \|weight vector will be
N vt R Dl
Or wit+ 1) = 1 —0.7(—=D 10051 —07(+D 1 0.75
-0.5 1 1
or
—0.5 ' 1.4

—0.5 0

by
w(+1)= 1051

e
0

An example of the perceptron algorithm. After the
turned from its initial location (dotted line) to the 1 The resulting new (solid) line 1.42x; + 0.51x2 — 0.5 = 0 classifies all vectors correctly, and

classified. the algorithm is terminated.




Terminology

If wi'x+ w, > 0assign x to w,
If wi'x+ wy <0 assign x to w,

(b)

The basic perceptron model. (a) A linear combiner is followed by the activation function.
(b) The combiner and the activation function are merged together.

* Perceptron or neuron
« Synaptic weights or synapses
« Activation function: e.g. f(x) =26(x) — 1



Variants

* Reward and punishment schemes

— Training vectors enter the algorithm cyclically
w(t+1) =w(t) + px ifXe € wy and w (x4 < 0
w(t+1) =w(t) — px if X4 € wy and w! ()X = 0
w(t+1) =w(t) otherwise

Example 3.2

Figure 3.4 shows four points in the two-dimensional space. Points (—1,0), (0, 1) belong
to class wy, and points (0, —1),(1,0) belong to class w>. The goal of this example is
to design a linear classifier using the perceptron algorithm in its reward and punishment
form. The parameter p is set equal to one, and the initial weight vector is chosen as w(0) =

[0,0,0]7 in the extended three-dimensional space. According to (3.21)—(3.23), the following
computations are in order:

X



Variants

* Pocket Algorithm

— Converges to an optimal solution, even if not
linearly separable

= |nitialize the weight vector w(0) randomly. Define
a stored (in the pocket!) vector wg. Set a history
counter h, of w to zero.

= At the t-th iteration step, update w(t + 1)
according to the perceptron rule. Use w(t + 1) to
test the number h of training vectors correctly
classified. If h > h, replace w, with w(t + 1) and
h with h. Continue the iterations.




M-class Case

* Naive approach |

nor w,
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M-class Case

* Naive approach Il

Hj,
Wy

‘




M-class Case

e Linear Machine

— Define M linear discriminant
functions g; (x)

— Assign x to w; if g;(x) =
g;j(x) forall j
* It R; and R; are contiguous,

the boundary is given by
the hyperplane

gi(x) = g;(x)




Kesler's Construction

e Generalization to M-class task

— Define a linear discriminant function w;, i = 1,2, ..., M, for each
class. Classify a feature vector x into class w; if

W/ X > WX Vj#i
— For each training vector from class w;, construct M — 1 vectors
x;; = [07, 07, ...,x",...,—x", ..., 0"]". It is a block vector, having
zeros everywhere except at the ith and jth block positions,
where it has x and —x, respectively.

— Also construct the block vector w = [w, ..., wi,]T.
— If x € w;, this imposes the requirement that w'x;; > 0,Vj # i.
— The task now is to design a linear classifier, in the extended

space, so that each extended training vector lies in its positive
side.
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