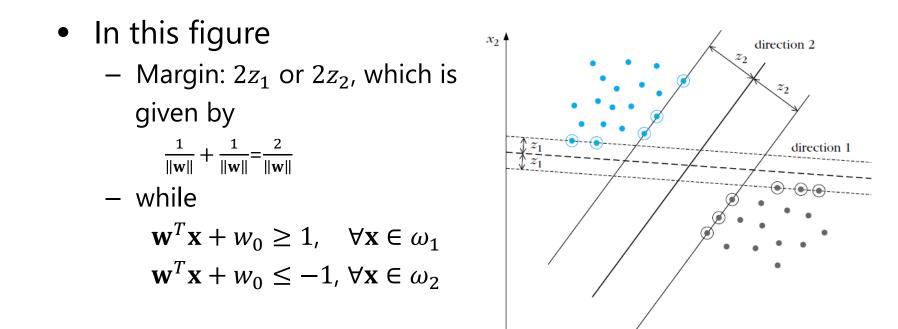

SUPPORT VECTOR MACHINES

Separable Classes


• The goal is again to design a separating hyperplane

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0 = 0$$

Separable Classes

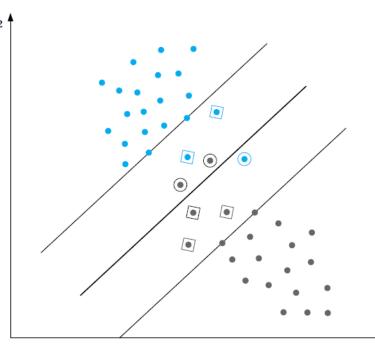
• Generalization performance of a classifier: capability to operate accurately on non-training data

Separable Classes

• The SVM problem can be formulated as computing the parameters **w**, *w*₀ so that

minimize
$$J(\mathbf{w}, w_0) \equiv \frac{1}{2} ||\mathbf{w}||^2$$

subject to $y_i(\mathbf{w}^T \mathbf{x}_i + w_0) \ge 1$, $i = 1, 2, ..., N$
where $y_i = 1$ if $\mathbf{x}_i \in \omega_1$ and 0 if $\mathbf{x}_i \in \omega_2$


- This is a standard optimization problem and can be solved using, for example, Matlab
- The optimization techniques are beyond the scope of this lecture

Non-separable Classes

- The margin is defined as the distance between the parallel hyperplanes $\mathbf{w}^T \mathbf{x} + w_0 = \pm 1$
- The training vectors belong to one of the following three categories:
 - Vectors that fall outside the band and are correctly classified ^{x2} y_i(w^Tx + w₀) > 1
 Vectors falling inside the band
 - 2) Vectors falling inside the band and are correctly classified

$$0 \le y_i(\mathbf{w}^T \mathbf{x} + w_0) < 1$$

3) Vectors that are misclassified $y_i(\mathbf{w}^T\mathbf{x} + w_0) < 0$

Non-separable Classes

Constraints

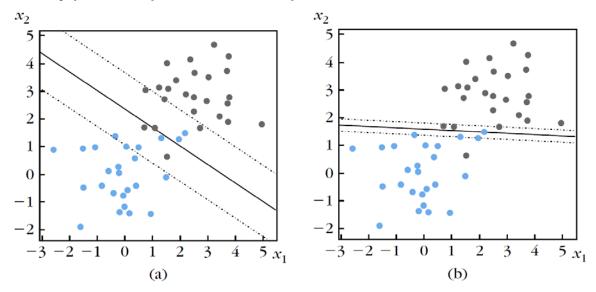
$$y_i[\mathbf{w}^T\mathbf{x} + w_0] \ge 1 - \xi_i$$

with slack variable ξ_i

- 1) $\xi_i = 0$
- 2) $0 < \xi_i \le 1$
- 3) $\xi_i > 1$
- Cost function

where

$$J(\mathbf{w}, w_0, \xi) \equiv \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^N I(\xi_i)$$
$$I(\xi_i) = \begin{cases} 1 & \xi_i > 0\\ 0 & \xi_i = 0 \end{cases}$$


• Because $I(\xi_i)$ is not differentiable, this is not easy to optimize

Non-separable Classes

• Problem formulation

Minimize $J(\mathbf{w}, w_0, \xi) \equiv \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^N \xi_i$ Subject to $y_i [\mathbf{w}^T \mathbf{x}_i + w_0] \ge 1 - \xi_i, \ i = 1, 2, ..., N$ $\xi_i \ge 0, \ i = 1, 2, ..., N$

• This is a typical optimization problem, which can be easily solved

FIGURE 3.13

An example of two nonseparable classes and the resulting SVM linear classifier (full line) with the associated margin (dotted lines) for the values (a) C = 0.2 and (b) C = 1000. In the latter