NEURAL NETWORKS

Terminology

If wix+ w, > 0assign x to w,
If wi'x+ w, <0 assign x to w,

(b)

The basic perceptron model. (a) A linear combiner is followed by the activation function.
(b) The combiner and the activation function are merged together.

* Perceptron or neuron
« Synaptic weights or synapses
 Activation function: e.g. f(x) = 6(x)

Nonlinear Classifiers

We deal with problems that are not linearly
separable

ONE! TWO! THREE!

One-Layer Perceptron

« XOR problem is not linearly separable

X, A

XOR Truth Table
for the XOR Problem
LA B x; x2 XOR Class
0 0 0 B

0 1 1 A
1 0 1 A
1 1 0 B

0! 1 Xy

One-Layer Perceptron

* AND and OR problems are linearly separable

Xy 4 x, b
\ AND OR Truth Table for AND and
OR Problems
1 A A x1 x> AND Class OR Class
» L]

\ 0 0 0 B 0 B

0 1 0 B 1 A
1 0 0 B 1 A
1 1 1 A 1 A

o

0 i Ny 0 N1 X

1-layer perceptron
implementation

Two-Layer Perceptron

« XOR problem: solve it in two successive phases
— 15t phase (or layer) uses two lines

X5 A

Truth Table for the Two
Computation Phases of the XOR
Problem

1st Phase

Xy X2) ¥ 2nd Phase

0 0 0(-) 0(-) B (0)
0 1 1(+) 0(=) A

. 1 0 1(+) 0(=) A(D)
©,0) | N * a0 \ x 1 1 1(+) 1(+) B (0)

Two-Layer Perceptron

« XOR problem: solve it in two successive phases
— 2nd phase

y2 4

Truth Table for the Two

Computation Phases of the XOR
Problem

1st Phase
Xy X2) ¥ 2nd Phase

0 0 0(=) 0(=) B (0)

0(=) A (1)

B

)

0 1)
> 1 0 1(+) 0(=) A(l)
1 1) 1(+) B (0)

0.0y |

Two-Layer Perceptron

« XOR problem: solve it in two successive phases
— 2-layer perceptron (or 2-layer feedforward neural network)

. \
1
F O
_1:// L Truth Table for the Two
< _% Computation Phases of the XOR
Problem
1st Phase
Xy X2) ¥ 2nd Phase
1
o gl(x):x1+x2__:0 0 0 O0(=) 0(=) B (0)
2 0 1 1(+) 0(=) A
3 .
ogz(x):x1+x2—5:0 1 0 1(+) 0O(=) A (1)
1 1 1(+) 1(+) B (0)
1

9 =y1—y2—5=0

Two-Layer Perceptron

* Terminology
— 2-layer perceptron (or 2-layer feedforward neural network)

X O: 7 _;L“NH 1
! 1 l\\
O
1 -
L7 l !
v, L o g B
s
Input hidden output
layer layer layer

(non-processing)

Two-Layer Perceptron

 Classification capabilities of two-layer perceptron

— Tstlayer maps input to vertices of the unit hypercube

Hy ={[y1,] €RP:y; €[0,1] for 1<i<p)

— An output of 1t layer corresponds to a polyhedron

Two-Layer Perceptron

 Classification capabilities of two-layer perceptron

— 2" |ayer detects a union of selected polyhedra

010

011 o

100

111

101

Two-Layer Perceptron

 Classification capabilities of two-layer perceptron

Two-layer perceptron can detect a class, which consists

of a union of polyhedral regions, but not any union of
such regions

010

Three-Layer Perceptron

« Classification capabillities of three-layer perceptron

Three-layer perceptron can detect a class, which consists
of any union of polyhedral regions

Three-Layer Perceptron

« Classification capabillities of three-layer perceptron

1st layer 2nd layer 3 layer

— In 2" layer, for each neuron, the synaptic weights are chosen so
that the realized hyperplane leaves only one of the H, vertices
on one side and all the rest on the other

— 31 Jayer implements OR gate

Three-Layer Perceptron

« Classification capabillities of three-layer perceptron

half-space polyhedron class

— Tstlayer detects half-spaces
— 2nd Jayer detects polyhedra

— 31 Jayer detects a class, which is any union of polyhedra

BACKPROPAGATION
ALGORITHM

Multilayer Perceptron Design

* Design a multilayer perceptron

— Fix an architecture, and optimize the synaptic weights
— To use the gradient descent scheme, we need a

continuous activation function
 Logistic function (instead of §(x))

- (@) =

1

1+exp(—ax)

S0

1=

dy=>ddy=d

Architecture and Formulation

L layers and k, neurons in the rth layer (r =1, ..., L)
— ko = I nodes in the input layer
— k; output neurons

N training pairs, (y(i),x(i)), i =1, ..., N, are available
— y(@) = [» @), ---,ykL(i)]T
= X(D) = [x1(D), e 2, (D]

During training, the actual output y(i) is different from
the desired one y(i)

Compute the synaptic weights to minimize

= Z £0)

kp
1
£ =5) k(i) = Z(;vma) YD)
m=1

Definition of Variables

ky—1

0=) Wik)
k=0

- / Uj . ‘.y;j
o< T
-. </
Ve Wik
C? ff C? :
: Weight vector for the |
I F jth neuron in the rth layer /
W]T = [W}E),qu; ""WJrkr—l]

r—1 r

Gradient Descent

w; (new) = w; (old) + Aw;
r oJ

* Details for subsequent steps are omitted

