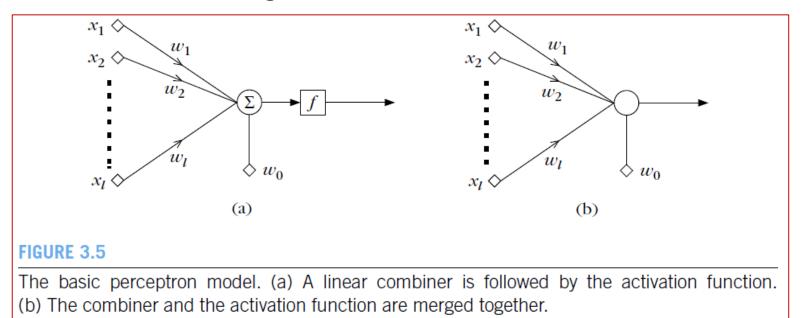
NEURAL NETWORKS

Terminology

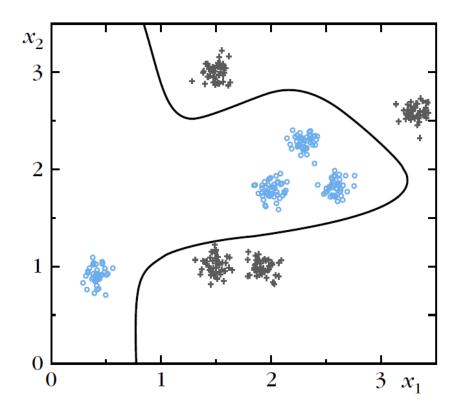
If $\mathbf{w}^T \mathbf{x} + w_0 > 0$ assign \mathbf{x} to ω_1 If $\mathbf{w}^T \mathbf{x} + w_0 < 0$ assign \mathbf{x} to ω_2



- Perceptron or neuron
- Synaptic weights or synapses
- Activation function: $e.g. f(x) = \delta(x)$

Nonlinear Classifiers

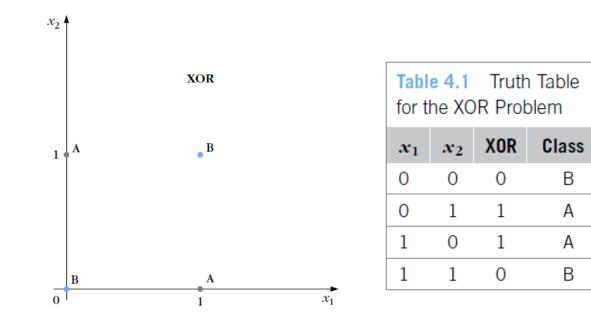
We deal with problems that are not linearly separable



ONE! TWO! THREE!

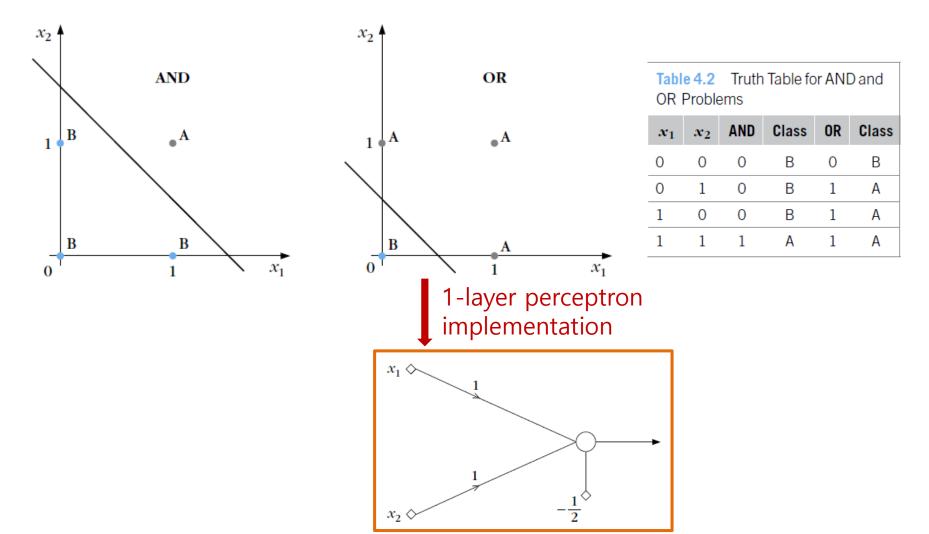
One-Layer Perceptron

• XOR problem is not linearly separable



One-Layer Perceptron

• AND and OR problems are linearly separable



XOR problem: solve it in two successive phases
 – 1st phase (or layer) uses two lines

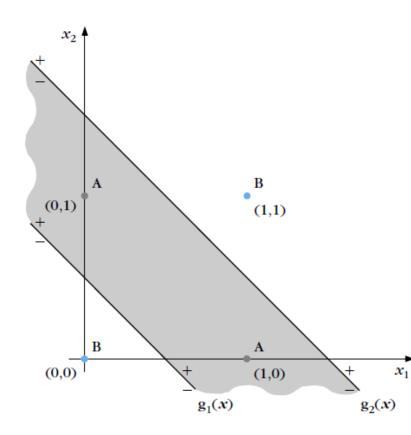


Table 4.3	Truth	Table for	or the	e Two
Computatio	n Pha	ases of	the	XOR
Problem				

	1st Phase			
x_1	x_2	y_1	y_2	2nd Phase
0	0	0(-)	0(-)	B (0)
0	1	1 (+)	0(-)	A (1)
1	0	1 (+)	0(-)	A (1)
1	1	1(+)	1 (+)	B (0)

XOR problem: solve it in two successive phases
 – 2nd phase

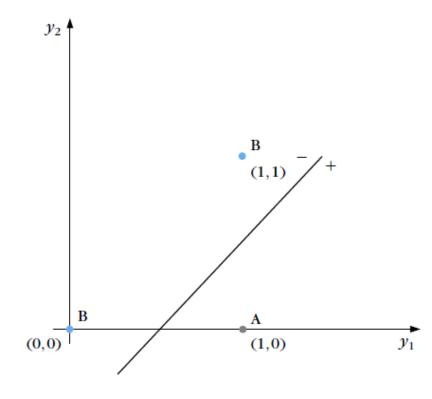
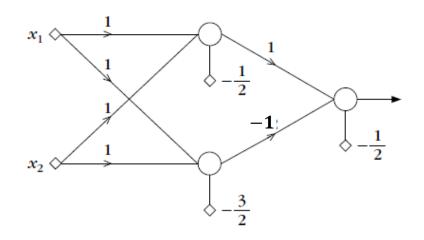


Table 4.3	Truth	Tabl	e fo	r the	e Two
Computatio	n Ph	lases	of	the	XOR
Problem					

	1st Phase			
x_1	x_2	y_1	y_2	2nd Phase
0	0	0(-)	0(-)	B (0)
0	1	1 (+)	0(-)	A (1)
1	0	1 (+)	0(-)	A (1)
1	1	1 (+)	1 (+)	B (0)

XOR problem: solve it in two successive phases

 2-layer perceptron (or 2-layer feedforward neural network)

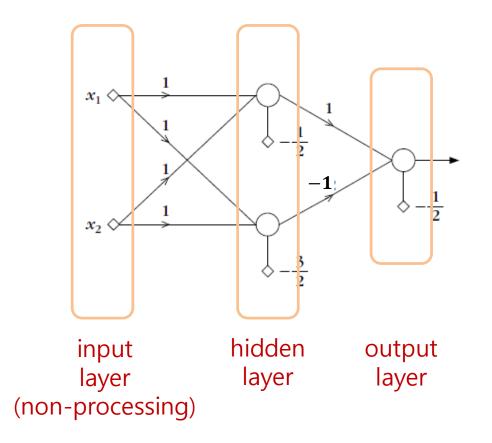


- $g_1(\mathbf{x}) = x_1 + x_2 \frac{1}{2} = 0$
- $g_2(\mathbf{x}) = x_1 + x_2 \frac{3}{2} = 0$
- $g(\mathbf{y}) = y_1 y_2 \frac{1}{2} = 0$

Table 4.3 T	ruth Tabl	e fo	r the	e Two
Computation	Phases	of	the	XOR
Problem				

1st Phase				
x_1	x_2	y_1	y_2	2nd Phase
0	0	0(-)	0(-)	B (0)
0	1	1 (+)	0(-)	A (1)
1	0	1 (+)	0(-)	A (1)
1	1	1 (+)	1 (+)	B (0)

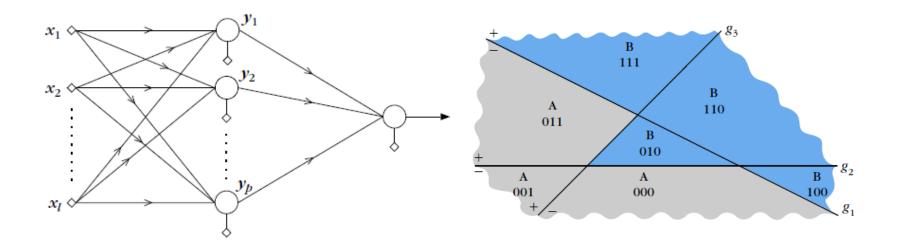
- Terminology
 - 2-layer perceptron (or 2-layer feedforward neural network)



- Classification capabilities of two-layer perceptron
 - 1st layer maps input to vertices of the unit hypercube

$$H_p = \left\{ \left[y_1, \dots, y_p \right]^T \in \mathbb{R}^p \colon y_i \in [0, 1] \text{ for } 1 \le i \le p \right\}$$

– An output of 1st layer corresponds to a polyhedron

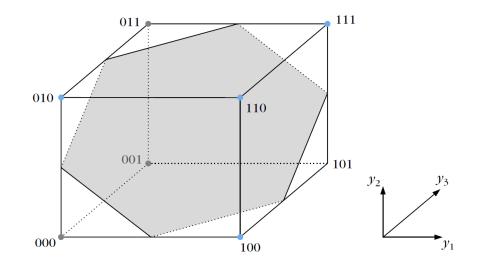


- Classification capabilities of two-layer perceptron
 - 2nd layer detects a union of selected polyhedra



• Classification capabilities of two-layer perceptron

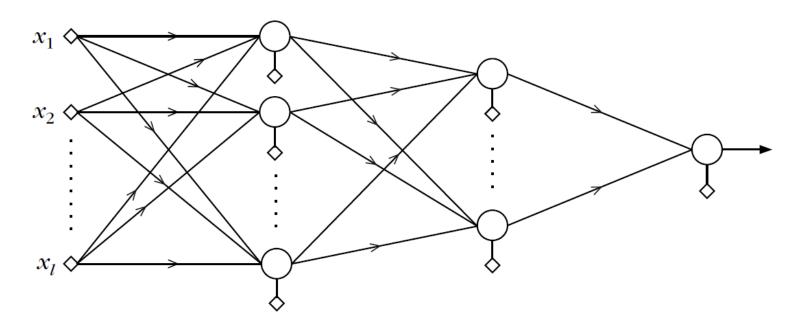
Two-layer perceptron can detect a class, which consists of a union of polyhedral regions, but not any union of such regions



Three-Layer Perceptron

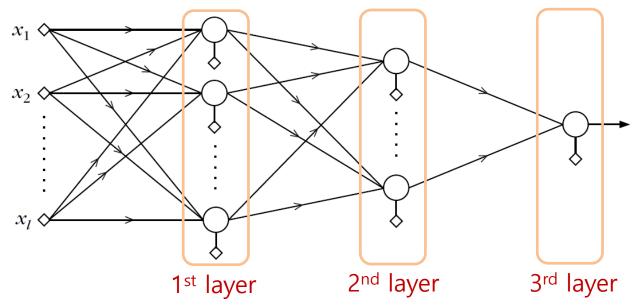
• Classification capabilities of three-layer perceptron

Three-layer perceptron can detect a class, which consists of **any** union of polyhedral regions



Three-Layer Perceptron

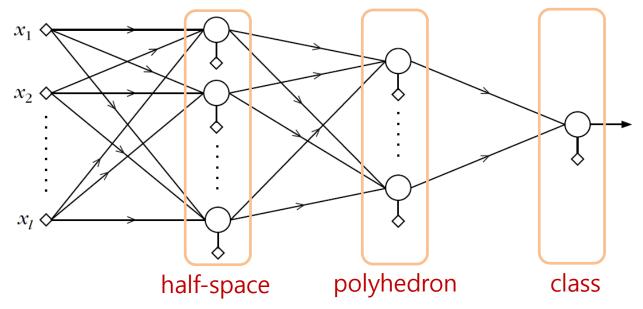
• Classification capabilities of three-layer perceptron



- In 2nd layer, for each neuron, the synaptic weights are chosen so that the realized hyperplane leaves only one of the H_p vertices on one side and all the rest on the other
- 3rd layer implements OR gate

Three-Layer Perceptron

• Classification capabilities of three-layer perceptron



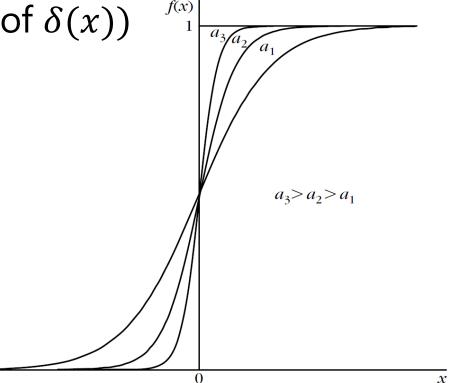
- 1st layer detects half-spaces
- 2nd layer detects polyhedra
- 3rd layer detects a class, which is any union of polyhedra

BACKPROPAGATION ALGORITHM

Multilayer Perceptron Design

- Design a multilayer perceptron
 - Fix an architecture, and optimize the synaptic weights
 - To use the gradient descent scheme, we need a continuous activation function
- Logistic function (instead of $\delta(x)$)

$$-f(x) = \frac{1}{1 + \exp(-ax)}$$



Architecture and Formulation

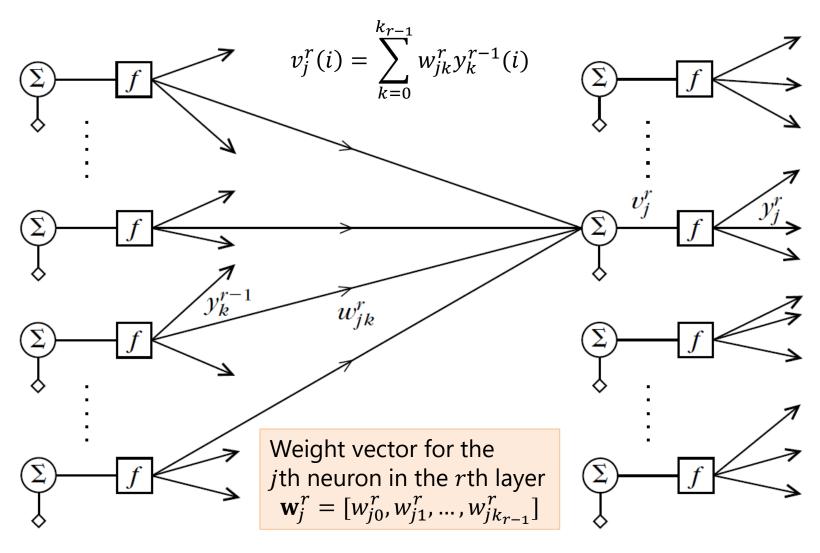
- L layers and k_r neurons in the rth layer (r = 1, ..., L)
 - $k_0 = l$ nodes in the input layer
 - k_L output neurons
- N training pairs, $(\mathbf{y}(i), \mathbf{x}(i))$, i = 1, ..., N, are available

$$- \mathbf{y}(i) = [y_1(i), \dots, y_{k_L}(i)]^T$$
$$- \mathbf{x}(i) = [x_1(i), \dots, x_{k_0}(i)]^T$$

- During training, the actual output $\hat{\mathbf{y}}(i)$ is different from the desired one $\mathbf{y}(i)$
- Compute the synaptic weights to minimize

$$J = \sum_{i=1}^{N} \mathcal{E}(i)$$
$$\mathcal{E}(i) = \frac{1}{2} \sum_{m=1}^{k_{L}} e_{m}^{2}(i) \equiv \frac{1}{2} \sum_{m=1}^{k_{L}} (\hat{y}_{m}(i) - y_{m}(i))^{2}$$

Definition of Variables



r-1

Gradient Descent

$$\mathbf{w}_{j}^{r}(\text{new}) = \mathbf{w}_{j}^{r}(\text{old}) + \Delta \mathbf{w}_{j}^{r}$$
$$\Delta \mathbf{w}_{j}^{r} = -\mu \frac{\partial J}{\partial \mathbf{w}_{j}^{r}}$$

• Details for subsequent steps are omitted