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Edge Detection



Edges

• Where the image 

values exhibit sharp 

variations

• Edges can be 
measured by
– 1st order derivatives

• Determine the gradients

• Perform non-maximal 
suppression

• Threshold

– 2nd order derivatives
• Find zero crossings in 

2nd derivatives using  
Laplacian



First-order derivative filters (1D)

• Sharp changes correspond to peaks of the 

first-derivative of the input signal
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Image gradient

• 2D gradient of an image:

• The gradient magnitude (edge strength):

• The gradient direction:
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Image gradient

• Horizontal change:

• Vertical change: 
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Image gradient

• General directions:

• Gradient direction is perpendicular to edge
– It represents the direction for the maximum change

• Gradient magnitude measures edge strength.

1 2, ( , )
I I

k k
x y

  
 

  



Discrete approximation of derivatives

• 1D derivative

• Discrete approximations
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Effects of noises

• Consider an 1-D signal

• Can you detect the edge?
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Noise suppression: pre-smoothing

Noise Filter
(Smoothing)

Edge
Detection
(Derivative)
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Noise smoothing and edge detection

• Prewitt edge detector:

– Vertical mask 
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Noise smoothing and edge detection
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• Prewitt edge detector:

– Horizontal mask 
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Prewitt Edge Detector

Result of Prewitt operator (threshold = 100)

Original image
|𝐸| > threshold
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Sobel Edge Detector

• Sobel Masks:

– Gives more weight to the 4-neighbors
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Sobel Edge Detector

Result of Sobel operator (threshold = 100)

Original image
|𝐸| > threshold
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Gaussian Smoothing

• Consider smoothing with Gaussian kernel
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Derivative of Gaussian

• Note that                         and

• This saves us one step 

  IG
dx

d
IG

dx

d








 2

2

2
2

)(' 



x

e
x

xG




I

IG
dx

d









G
dx

d



2D edge detection filters

Gaussian derivative of Gaussian (DOG)
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Second-order derivative filters (1D)

• Peaks of the first-derivative of the input signal 

correspond to “zero-crossings” of the second-

derivative.
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Second-order derivative filters (1D)

• The condition: 𝑓′′(𝑥) = 0 is not enough for 

edgeness

– 𝑓(𝑥) = 𝑐 has 𝑓′′(𝑥) = 0, but there is no edge

• We need check whether |𝑓′ 𝑥 | is big 

enough



2D Laplacian Operator
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2D Laplacian Operator

• 2𝐼(𝑥, 𝑦) is a scalar (isotropic)

– Pros: It can be found using a SINGLE 

mask

– Cons: The orientation information is 

lost

• 2𝐼(𝑥, 𝑦) is the sum of second-

order derivatives

– But taking derivatives increases noises

– Very sensitive to noises

• It is always combined with a 

smoothing (Gaussian) operation



Laplacian of Gaussian (LOG)
• In 1D, consider

• Edge is the zero-crossing of the bottom graph

  IG
x

IG
x


















2

2

2

2

I

IG
x













2

2

G
x2

2







Laplacian of Gaussian (LOG)

• 𝑂(𝑥, 𝑦) =

2(𝐼(𝑥, 𝑦) ∗ 𝐺(𝑥, 𝑦))

1. Smoothing with a 
Gaussian filter

2. Finding zero-
crossings with a 
Laplacian filter

• Using linearity:
– 𝑂 𝑥, 𝑦 =

2𝐺 𝑥, 𝑦 ∗ 𝐼(𝑥, 𝑦)

– The combined  filter is 
called LOG
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LOG Filter
• Mexican hat operator (inverted LoG) 

1-D 2-D
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LOG Filter 

Original 
image
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Second-Order Edge Detectors

• The Marr-Hildreth Operator

1. Laplacian of Gaussian (LoG)

2. Finding zero-crossing points



Second-Order Edge Detectors

• Laplacian of Gaussian (LoG)

𝛻2(𝑔 𝑥, 𝑦 ∗ 𝐏)=𝛻2(𝑔 𝑥, 𝑦 ) ∗ 𝐏

• 𝛻2(𝑔 𝑥, 𝑦 )=
1

𝜎2
𝑥2+𝑦2

𝜎2
− 2 𝑒

−
𝑥2+𝑦2

2𝜎2

• Maxican hat operator

• It is similar to the difference of Gaussian



Second-Order Edge Detectors

• Finding zero-crossing points

• Find the averages of the four quadrants

• If the max average is positive and the min average is negative, 

then the center point is detected



Second-Order Edge Detectors

• Result of the Marr-Mildreth operator



Canny Edge Detector

• Canny Edge Detector

– Uses a mathematical model of the edge and 
noises

– Sets a performance criterion

– Synthesizes the optimal filter

• Experiments consistently show that it 
performs very well 

• Widely used by C.V. practitioners for 30 years

• J. Canny, “A Computational Approach to Edge Detection”, IEEE 
Transactions on Pattern Analysis and Machine Intelligence, Vol 8, No. 6, 

Nov 1986.



Edge & Noise Model (1D)

• An ideal edge can be modeled as an step

• Additive, white Gaussian noise

A



Performance Criteria

• Good detection

– The filter must have a strong response at the 
edge location (𝑥 = 0)

• Good localization

– The filter response must be maximum very close 
to 𝑥 = 0

• Low false positives

– There should be only one maximum in a 
reasonable neighborhood of 𝑥 = 0



Optimal Filter

• Canny found a linear, continuous filter that 

maximized the three given criteria

• There is no close-form solution for the 

optimal filter

• However, it looks very similar to the 

derivative of Gaussian (DoG)



Canny Edge Detector

• Three procedures

– Gradient computation

– Nonmaximum suppression

– Thresholding



Procedure: Gradient Computation

• Given an input image 𝐼 and a zero mean 

Gaussian filter 𝐺 (std = 𝜎)

1. 𝐽 = 𝐼 ∗ 𝐺 (smoothing)

2. For each pixel (𝑖, 𝑗) (Gradient computation)

• Compute the image gradient 

𝐽(𝑖, 𝑗) = (𝐽𝑥(𝑖, 𝑗), 𝐽𝑦(𝑖, 𝑗))

• Estimate edge strength 

𝐸𝑠(𝑖, 𝑗) = 𝐽𝑥
2 𝑖, 𝑗 + 𝐽𝑦

2 𝑖, 𝑗
1/2

• Estimate edge orientation 

𝐸𝑜 𝑖, 𝑗 = arctan
𝐽𝑦 𝑖, 𝑗

𝐽𝑥 𝑖, 𝑗

• The output are images 𝐸𝑠 and 𝐸𝑜



Nonmaximum Suppression

• 𝐸𝑠 has the magnitudes of the smoothed 

gradient.

– 𝜎 determines the amount of smoothing

• 𝐸𝑠 has large values at edges

• However, 𝐸𝑠 is large along thick trail.  

how do we identify the significant 

points?



NONMAXIMUM SUPRESSION

• We wish to mark points along the curve where the magnitude is 
biggest.

• We can do this by looking for the maximum along a slice normal 
to the curve (nonmaximum suppression).  



• Non-maximum suppression:

 At q, we have a maximum if the value is larger than those 
at both p and at r. 

 Interpolate to get these value

NONMAXIMUM SUPRESSION



Procedure: Nonmaximum Suppression

• The inputs are 𝐸𝑠 & 𝐸𝑜

• Consider 4 directions 𝐷 = {0°, 45°, 90°, 135°}

• For each pixel (𝑖, 𝑗) do:

1. Find the direction 𝑑𝐷 s.t. 𝑑  𝐸𝑜(𝑖, 𝑗) (normal to the edge)

2. If 𝐸𝑠(𝑖, 𝑗) is smaller than at least one of its neighbor along 𝑑

𝐼𝑁(𝑖, 𝑗) = 0

Otherwise, 

𝐼𝑁(𝑖, 𝑗) = 𝐸𝑠(𝑖, 𝑗)

• The output is the thinned edge image 𝐼𝑁



Procedure: Thresholding

• Edges are found by thresholding the output 

of NONMAX_SUPRESSION

• If the threshold is too high:

– Very few (none) edges 

• Many false negatives, many gaps

• If the threshold is too low:

– Too many (all pixels) edges

• Many false positives, many extra edges



Results

original image Gradients

Nonmaximum
suppression and 

thresholding



Canny with Canny with original 

• controls the scale of the features

 large     detects large scale edges only

 small     detects fine features as well

Results



fine scale, high threshold

coarse scale, high threshold coarse scale, low threshold



Canny Edge Detector

• Hysteresis thresholding

– Recursive search of 8 neighbors



Hysteresis Thresholding



Challenges or Opportunities?

Edges are really at the lower level?
Can we find better edges or silhouettes?


