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2D Motion vs. Optical Flow

* True 2D motion
— There is 3D motion between object and camera
— It is projected onto 2D imaging plane
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2D Motion vs. Optical Flow

* Optical flow

— observed, perceived, apparent 2D motion based on changes
in pixel luminance

— It also depends on illumination and object surface texture
— It may not represent true 2D motion

On the left, a sphere is rotating
under a constant ambient
illumination, but the observed image
does not change.

On the right, a point light source is
rotating around a stationary
sphere, causing the highlight point
on the sphere to rotate.




Optical Flow Equation

« Given only video sequence without any other information (such as
illumination condition), we cannot estimate true 2D motion.

« The best one can hope to estimate is optical flow
e Constant intensity assumption — optical flow equation

Under "constant intensity assumption":
y(x+d.,y+d,t+d)=y(x,yt)

But, using Taylor's expansion :
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Ambiguities in Optical Flow Estimation

« Optical flow equation constrains the A
motion vector in the gradient \
direction v, only

« The flow vector in the tangent
direction v; is under-determined

— We can only determine the
displacement that is orthogonal to
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Ambiguities in Optical Flow Estimation

t+dt

Contour lines

t



Ambiguities in Optical Flow Estimation




Example

« Consider a video signal s(x, y, t) defined over the entire
3-D space (x,y,t), where s(x, y, t) is generated from one
object, which undergoes translational motion with a
uniform constant velocity (v, v, ). Suppose that
s(x,y,0) =x+y+ xy.

1. Determine s(x,y,t).

2. Show that in this case the following optical flow equation holds
true.

ds(x,y,t) ds(x,y,t) Js(x,y,t)
Uy I + v, 3y + 3 =0




General Considerations for Motion Estimation

« Two categories of approaches

— Feature based
« Correspondence between edges, points, etc
» Object tracking, 3D reconstruction from 2D

— Intensity based
* Optical flow estimation based on constant intensity assumption

* Motion compensated prediction and filtering
* Focus in this class

* Three important questions
— How to represent the motion field?
— Which cost function (criterion) to use to estimate motion
parameters?
— Which optimization technique?



Motion Representation

Global:

Entire motion field is
represented by a few
global parameters

Block-based:

Entire frame is divided
into blocks, and motion
in each block is
characterized by a few
parameters.
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Pixel-based:

One MV at each pixel,
with some smoothness
constraint between
adjacent MVs.

Region-based:

Entire frame is divided
into regions, each
region corresponding
to an object or sub-
object with consistent
motion, represented by
a few parameters.

Other representation: mesh-based (control grid) (to be discussed later)



Notations
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Backward motion estimation
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Anchor frame: /(X)
Target frame: /»(X)
Motion parameters: a

Motion vector at a
pixel in the anchor
frame: d(x)

Motion field: d(x;a),xe A
Mapping function:

w(x:a)=x+d(x;a),xe A



Motion Estimation Criteria
Minimize displaced frame difference
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For p = 2 (MSE), the necessary condition for minimum 1s that
the derivative is zero. Let z = w(x:;a) = x + d(x;a). Then,
the derivative is given by
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Motion Estimation Criteria

Optical Flow Equation
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where d(x;a) = [d,,d,]! and

vixia) = (v, v,)"

the cost function

= |d,/dy. d,/ ;]!

Thus, obtain the motion vector parameters a which minimizes



Lucas-Kanade Method

» Based on optical flow equation

* Assuming all pixels in a small block surrounding a
pixel have the same motion vector



Lucas-Kanade Method
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Under-determined system
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Then, the optimal vector is set as the vector of the current pixel



Lucas-Kanade Method

Solution

By setting the partial derivatives with respect to v, and v,, to zeros
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