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Chapter 16. Laurent Series

Chang-Su Kim

The contents herein are based on the book “Advanced Engineering Mathematics” by E. Kreyszig and only for

the course KEEE202, Korea University.
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I. Laurent’s Theorem

Laurent series generalize Taylor series.

� Laurent Theorem: Let f(z) be analytic in a domain, which contains C1 and C2 and the annulus

between them. Then, we have

z0

C2

C1

f(z) =
∞∑

n=−∞
an(z − z0)n,

an =
1

2πi

∮
C

f(z∗)
(z∗ − z0)n+1

dz∗. (1)

•The series converges and represents f(z) in the enlarged open annulus, obtained by continuously

increasing C1 and decreasing C2, until they reach a point where f(z) is singular.

• If z0 is the only singular point inside C2, C2 can be shrunk to the point z0. In other words, f(z)

converges in a disk except z0. Also, in such a case, the negative powers are called the principal

part.

� Ex 1 : z−5 sin z
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� Ex 2 : z2e
1
z

� Ex 3 : 1
1−z

� Ex 4 : Find all Laurent series of

f(z) =
−2z + 3

z2 − 3z + 2
with center 0
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II. Singularities and Zeros

• f(z) is said to be singular at z = z0, if f(z) is not analytic at z = z0 but every neighborhood

of z = z0 contains points at which f(z) is analytic. Also, a singular point z0 is called isolated, if

z0 has a neighborhood without further singularities.

� Ex: tan 1
z is singular at z = 0. But, it is not an isolated singularity.

� Classification of isolated singularities at z = z0

f(z) =
∞∑

n=0

an(z − z0)n +
∞∑

n=1

bn

(z − z0)n︸ ︷︷ ︸
principal part

(0 < |z − z0| < R).

If the principal part contains finitely many terms, z = z0 is called a pole and we have

Principal part = b1
z−z0

+ b2
(z−z0)2

+ . . . + bm
(z−z0)m

m = order of the pole at z = z0

Especially, a pole of the first order is called a simple pole. If the principal part contains infinitely

many terms, z = z0 is called an isolated essential singularity.

� Ex 1:

f(z) =
1

z(z − 2)5
+

3
(z − 2)2

z = 0 : a simple pole.

z = 2 : a pole of order 5.

� Ex 2:

f(z) = sin
1
z

=
1
z
− 1

3!
1
z3

+
1
5!

1
z5

+ . . .

z = 0 : an isolated essential singularity.
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•A zero of an analytic function f(z) in D is a point z = z0 such that f(z0) = 0. A zero has

order n, if f, f ′, f ′′, . . . , f (n−1) are zero at z = z0 but f (n)(z0) �= 0. A first-order zero is called a

simple zero.

� Ex )

• f(z) = 1 + z2

• f(z) = (1 − z4)2

• f(z) = (1 − cos z)2

•Taylor series at a zero of order n is given by

f(z) = an(z − z0)n + an+1(z − z0)n+1 + . . . (an �= 0)

= (z − z0)n
[
an + an+1(z − z0) + an+2(z − z0)2 + . . .

]

•Relationship between poles and zeros: If f(z) has a zero of order n at z = z0, 1
f(z) has a pole

of order n at z = z0.
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III. Residue Integration Method

� Let f(z) be analytic on C and inside C, except at a singular point z = z0.

z0z0

C

Then, we have ∫
C

f(z)dz = 2πib1

where b1 is called the residue of f(z) at z = z0 and denoted by

b1 = Resz=z0f(z).

Proof)

� Ex 1: f(z) = z−4 sin z, C: counterclockwise unit circle.

� Ex 2: f(z) = 1
z3−z4 , C: z = 1

2 , clockwise.
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IV. Formulas for Residues

� Simple poles:

Resz=z0f(z) = b1 = lim
z→∞(z − z0)f(z).

Also, if f(z) = p(z)
q(z) and p(z0) �= 0, then q(z) has a simple zero at z0, and

Resz=z0f(z) = Resz=z0

p(z)
q(z)

=
p(z0)
q′(z0)

� Ex: f(z) = az+i
z3+z

� Poles of order m:

Resz→z0f(z) =
1

(m − 1)!
lim

z→z0

dm−1

dzm−1

[
(z − z0)mf(z)

]

� Ex: f(z) = 50z
(z−1)2(z+4)
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V. Multiple Singularities Inside Contour

z3

C

z1 z2

∫
C

f(z)dz = 2πi
[
Resz=z1f(z) + Resz=z2f(z) + Resz=z3f(z)

]

� Ex 1:

f(z) =
∫

C

4 − 3z

z2 − z
dz

C10 1 C3
C2

C4

� Ex 2 :

f(z) =
zeπz

z4 − 16
+ ze

π
z

C

1

2i

-2i

3
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VI. Residue Integration of Real Integrals

A. Type 1 - Integrals Including Sinusoidal Functions

To evaluate

J =
∫ 2π

0
F (cos θ, sin θ)dθ,

we set z = eiθ. Then, we have

J = F

(
1
2

(
z +

1
z

)
,

1
2i

(
z − 1

z

))
1
iz

dz

� Ex)
∫ 2π
0

1√
2−cos θ

dθ

B. Type 2 - Real Integral over The Whole Line

Suppose that f(x) is a real rational function, whose denominator �= 0 for all x and has a degree

at least two units higher than the degree of denominator. Then, we have

∫ ∞

−∞
f(x) dx = 2πi

∑
u.h.p.

Resf(z).

-R R

S

� Ex)
∫ ∞
0

1
1+x4 dx
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C. Type 3 - Fourier Integrals

Suppose that f(x) is a real rational function, whose denominator �= 0 for all x and has a degree

at least two units higher than the degree of denominator. Then, for s > 0, we have
∫ ∞

−∞
f(x) cos sx dx = −2π

∑
u.h.p.

Im Res
[
f(z)eisz

]
,

∫ ∞

−∞
f(x) sin sx dx = 2π

∑
u.h.p.

Re Res
[
f(z)eisz

]
.

Alternatively, ∫ ∞

−∞
f(x)eisx dx = 2πi

∑
u.h.p.

Res
[
f(z)eisz

]
.

� Ex: evaluate
∫ ∞
−∞

cos sx
k2+x2 dx and

∫ ∞
−∞

sin sx
k2+x2 dx, where s > 0 and k > 0.

D. Type 4 - Cauchy Principal Value

Suppose that A < a < B and limx→a |f(x)| = ∞. Then, the Cuchy principal value is defined

by

pr.v.
∫ B

A
f(x)dx = lim

ε→0

[∫ a−ε

A
f(x)dx +

∫ B

a+ε
f(x)dx

]
.

The following theorem is useful in computing the Cauchy principal value.

� If f(z) has a simple pole at z = a on the real axis,

lim
r→0

∫
C2

f(z)dz = πiResz=af(z).

a a+ra r

C2
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� Ex: Evaluate

pr.v.
∫ ∞

−∞
1

(x2 − 3x + 2)(x2 + 1)
dx

October 9, 2006 LECTURE NOTES


