Chapter 16. Laurent Series

Chang-Su Kim

[^0]
I. Laurent's Theorem

Laurent series generalize Taylor series.
\star Laurent Theorem: Let $f(z)$ be analytic in a domain, which contains C_{1} and C_{2} and the annulus between them. Then, we have

$$
\begin{align*}
f(z) & =\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n}, \\
a_{n} & =\frac{1}{2 \pi i} \oint_{C} \frac{f\left(z^{*}\right)}{\left(z^{*}-z_{0}\right)^{n+1}} d z^{*} . \tag{1}
\end{align*}
$$

- The series converges and represents $f(z)$ in the enlarged open annulus, obtained by continuously increasing C_{1} and decreasing C_{2}, until they reach a point where $f(z)$ is singular.
- If z_{0} is the only singular point inside C_{2}, C_{2} can be shrunk to the point z_{0}. In other words, $f(z)$ converges in a disk except z_{0}. Also, in such a case, the negative powers are called the principal part.
$\star \operatorname{Ex} 1: z^{-5} \sin z$
$\star \operatorname{Ex} 2: z^{2} e^{\frac{1}{z}}$
$\star \operatorname{Ex} 3: \frac{1}{1-z}$
\star Ex 4 : Find all Laurent series of

$$
f(z)=\frac{-2 z+3}{z^{2}-3 z+2} \quad \text { with center } 0
$$

II. Singularities and Zeros

- $f(z)$ is said to be singular at $z=z_{0}$, if $f(z)$ is not analytic at $z=z_{0}$ but every neighborhood of $z=z_{0}$ contains points at which $f(z)$ is analytic. Also, a singular point z_{0} is called isolated, if z_{0} has a neighborhood without further singularities.
\star Ex: $\tan \frac{1}{z}$ is singular at $z=0$. But, it is not an isolated singularity.
\star Classification of isolated singularities at $z=z_{0}$

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\underbrace{\sum_{n=1}^{\infty} \frac{b_{n}}{\left(z-z_{0}\right)^{n}}}_{\text {principal part }} \quad\left(0<\left|z-z_{0}\right|<R\right)
$$

If the principal part contains finitely many terms, $z=z_{0}$ is called a pole and we have

$$
\text { Principal part }=\frac{b_{1}}{z-z_{0}}+\frac{b_{2}}{\left(z-z_{0}\right)^{2}}+\ldots+\frac{b_{m}}{\left(z-z_{0}\right)^{m}}
$$

$m=$ order of the pole at $z=z_{0}$
Especially, a pole of the first order is called a simple pole. If the principal part contains infinitely many terms, $z=z_{0}$ is called an isolated essential singularity.

* Ex 1 :

$$
f(z)=\frac{1}{z(z-2)^{5}}+\frac{3}{(z-2)^{2}}
$$

$z=0$: a simple pole.
$z=2$: a pole of order 5 .
$\star \operatorname{Ex} 2$:

$$
f(z)=\sin \frac{1}{z}=\frac{1}{z}-\frac{1}{3!} \frac{1}{z^{3}}+\frac{1}{5!} \frac{1}{z^{5}}+\ldots
$$

$z=0$: an isolated essential singularity.

- A zero of an analytic function $f(z)$ in D is a point $z=z_{0}$ such that $f\left(z_{0}\right)=0$. A zero has order n, if $f, f^{\prime}, f^{\prime \prime}, \ldots, f^{(n-1)}$ are zero at $z=z_{0}$ but $f^{(n)}\left(z_{0}\right) \neq 0$. A first-order zero is called a simple zero.
\star Ex)
- $f(z)=1+z^{2}$
- $f(z)=\left(1-z^{4}\right)^{2}$
- $f(z)=(1-\cos z)^{2}$
- Taylor series at a zero of order n is given by

$$
\begin{aligned}
f(z) & =a_{n}\left(z-z_{0}\right)^{n}+a_{n+1}\left(z-z_{0}\right)^{n+1}+\ldots \\
& =\left(z-z_{0}\right)^{n}\left[a_{n}+a_{n+1}\left(z-z_{0}\right)+a_{n+2}\left(z-z_{0}\right)^{2}+\ldots\right]
\end{aligned}
$$

- Relationship between poles and zeros: If $f(z)$ has a zero of order n at $z=z_{0}, \frac{1}{f(z)}$ has a pole of order n at $z=z_{0}$.
III. Residue Integration Method
\star Let $f(z)$ be analytic on C and inside C, except at a singular point $z=z_{0}$.

Then, we have

$$
\int_{C} f(z) d z=2 \pi i b_{1}
$$

where b_{1} is called the residue of $f(z)$ at $z=z_{0}$ and denoted by

$$
b_{1}=\operatorname{Res}_{z=z_{0}} f(z) .
$$

Proof)
\star Ex 1: $f(z)=z^{-4} \sin z, C$: counterclockwise unit circle.
\star Ex 2: $f(z)=\frac{1}{z^{3}-z^{4}}, C: z=\frac{1}{2}$, clockwise.

IV. Formulas for Residues

^ Simple poles:

$$
\operatorname{Res}_{z=z_{0}} f(z)=b_{1}=\lim _{z \rightarrow \infty}\left(z-z_{0}\right) f(z)
$$

Also, if $f(z)=\frac{p(z)}{q(z)}$ and $p\left(z_{0}\right) \neq 0$, then $q(z)$ has a simple zero at z_{0}, and

$$
\operatorname{Res}_{z=z_{0}} f(z)=\operatorname{Res}_{z=z_{0}} \frac{p(z)}{q(z)}=\frac{p\left(z_{0}\right)}{q^{\prime}\left(z_{0}\right)}
$$

$\star \mathrm{Ex}: f(z)=\frac{a z+i}{z^{3}+z}$
\star Poles of order m :

$$
\operatorname{Res}_{z \rightarrow z_{0}} f(z)=\frac{1}{(m-1)!} \lim _{z \rightarrow z_{0}} \frac{d^{m-1}}{d z^{m-1}}\left[\left(z-z_{0}\right)^{m} f(z)\right]
$$

\star Ex: $f(z)=\frac{50 z}{(z-1)^{2}(z+4)}$
V. Multiple Singularities Inside Contour

$$
\int_{C} f(z) d z=2 \pi i\left[\operatorname{Res}_{z=z_{1}} f(z)+\operatorname{Res}_{z=z_{2}} f(z)+\operatorname{Res}_{z=z_{3}} f(z)\right]
$$

\star Ex 1:

$$
f(z)=\int_{C} \frac{4-3 z}{z^{2}-z} d z
$$

* Ex 2 :

$$
f(z)=\frac{z e^{\pi z}}{z^{4}-16}+z e^{\frac{\pi}{z}}
$$

VI. Residue Integration of Real Integrals

A. Type 1 - Integrals Including Sinusoidal Functions

To evaluate

$$
J=\int_{0}^{2 \pi} F(\cos \theta, \sin \theta) d \theta
$$

we set $z=e^{i \theta}$. Then, we have

$$
J=F\left(\frac{1}{2}\left(z+\frac{1}{z}\right), \quad \frac{1}{2 i}\left(z-\frac{1}{z}\right)\right) \frac{1}{i z} d z
$$

$\star \operatorname{Ex}) \int_{0}^{2 \pi} \frac{1}{\sqrt{2}-\cos \theta} d \theta$
B. Type 2-Real Integral over The Whole Line

Suppose that $f(x)$ is a real rational function, whose denominator $\neq 0$ for all x and has a degree at least two units higher than the degree of denominator. Then, we have

$$
\int_{-\infty}^{\infty} f(x) d x=2 \pi i \sum_{\text {u.h.p. }} \operatorname{Res} f(z)
$$

$\star \operatorname{Ex}) \int_{0}^{\infty} \frac{1}{1+x^{4}} d x$

C. Type 3-Fourier Integrals

Suppose that $f(x)$ is a real rational function, whose denominator $\neq 0$ for all x and has a degree at least two units higher than the degree of denominator. Then, for $s>0$, we have

$$
\begin{aligned}
\int_{-\infty}^{\infty} f(x) \cos s x d x & =-2 \pi \sum_{\text {u.h.p. }} \operatorname{Im} \operatorname{Res}\left[f(z) e^{i s z}\right], \\
\int_{-\infty}^{\infty} f(x) \sin s x d x & =2 \pi \sum_{\text {u.h.p. }} \operatorname{Re} \operatorname{Res}\left[f(z) e^{i s z}\right]
\end{aligned}
$$

Alternatively,

$$
\int_{-\infty}^{\infty} f(x) e^{i s x} d x=2 \pi i \sum_{\text {u.h.p. }} \operatorname{Res}\left[f(z) e^{i s z}\right] .
$$

\star Ex: evaluate $\int_{-\infty}^{\infty} \frac{\cos s x}{k^{2}+x^{2}} d x$ and $\int_{-\infty}^{\infty} \frac{\sin s x}{k^{2}+x^{2}} d x$, where $s>0$ and $k>0$.

D. Type 4-Cauchy Principal Value

Suppose that $A<a<B$ and $\lim _{x \rightarrow a}|f(x)|=\infty$. Then, the Cuchy principal value is defined by

$$
\text { pr.v. } \int_{A}^{B} f(x) d x=\lim _{\epsilon \rightarrow 0}\left[\int_{A}^{a-\epsilon} f(x) d x+\int_{a+\epsilon}^{B} f(x) d x\right] .
$$

The following theorem is useful in computing the Cauchy principal value.
\star If $f(z)$ has a simple pole at $z=a$ on the real axis,

$$
\lim _{r \rightarrow 0} \int_{C_{2}} f(z) d z=\pi i \operatorname{Res}_{z=a} f(z) .
$$

\star Ex: Evaluate

$$
\text { pr.v. } \int_{-\infty}^{\infty} \frac{1}{\left(x^{2}-3 x+2\right)\left(x^{2}+1\right)} d x
$$

[^0]: The contents herein are based on the book "Advanced Engineering Mathematics" by E. Kreyszig and only for the course KEEE202, Korea University.

