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Discrete-Time LTI Systems



Representing Signals in Terms of Impulses

= Sifting property
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Impulse Response

= The response of a system H to the unit
Impulse §[n] is called the impulse response,
which is denoted by h[n]

» h[n] = R[[n]]
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Convolution Sum

= Let h[n] be the impulse response of an LTI system.

= Given h[n], we can compute the response y[n] of the
system to any input signal x[n].
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Convolution Sum

= Let h[n] be the impulse response of an LTI system.

= Given h[n], we can compute the response y[n] of the
system to any input signal x[n].
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Convolution Sum

= Let h[n] be the impulse response of an LTI system.

= Given h[n], we can compute the response y[n] of the
system to any input signal x[n].

x[n] = i X[k]o[n—K] A=t [X[:]]
= _H { > x[k]o[n— k]}
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Convolution Sum

= Notation for convolution sum

yIn]=x[n]*hn]= > x[KIh[n—k]

k=—00

= The characteristic of an LTI system is completely
determined by its impulse response.
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Convolution Sum

= To compute the convolution sum

o0

yIn]=x[n]*h[n]= D x[k]h[n—K]

k=—c0

Step 1 Plot x and h vs k since the convolution sum is on k.
Step 2 Flip h[k] around the vertical axis to obtain h[-K].

Step 3 Shift h[-k] by n to obtain h[n-k].
Step 4 Multiply to obtain x[k]h[n-K].

Step 5 Sum on k to compute > x[k]h[n-k].
Step 6 Change n and repeat Steps 3-6.



Example

Consider an LTI system that has an

iImpulse response h[n] = u[n]

What is the response when an input

signal is given by
x[n] = &"u[n]
where 0<g <17

For n>0, n
yinl=> «
k=0
1_an+1
- l-a
Therefore,

y[n]=[11“ ]u[n]

]

HHHHHIJJmE

5 10
n

0

h[n]




Convolution Sum

Demonstration



Continuous-Time LTI Systems



Impulse Response

= The response of a system H to the unit impulse §(t) is
called the impulse response, which is denoted by h(t)

» h(t) = H(S(1)
o(h) System h(® ,
O(D) H h,(1)

» As A-0, §,(t) — §(t) and h,(t) — h(t)

Recall the definition of approximated impulse function
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Staircase Approximation of x(t)
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Convolution Integral
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Convolution Integral

Definition

Time invariance

Scaling

x(t)

y(t)

5&(1*.) —

CT LTI

—- hﬂ\(t)

SA(t—kA) —»

CT LTI

——» ha(t—EA)

r(EAYSA(t — EA) ——»

CT LTI

—— 2 (kAYh A (T—kA)

Superposition » "z (kA)S (t—kA) A —»
'IL.

CT LTI

—» Z r(EAYhA(t—kA) A
ke




Convolution Integral

The derivation shows that a staircase approximation to the input

0

X, (t) =D x(kA)S, (t—kA)A

k=—00

yields an approximation to the output

o0

Yo (1) = D x(kA)h, (t—kA)A

k=—o0

Now we take the limit. As A — 0, ™(t) — (1), ha(t) — h(t), Xa(t) —
X(t), and ya(t) — y(t). Also, the sums approach the integrals

x(®)=[ x(z)5(t-7)dr  Sifting property

y(t) = Z x(r)h(t—7)dz  Convolution integral



Another Interpretation of Sifting Property

To see the meaning of the sifting property

X(t)= [ x(r)s(t-r)dz

we approximate the impulse with a tall, narrow pulse 0x(t-t)
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Convolution Integral

= To compute the convolution integral
y(t) = x@®)*h(t) = [ x(z)h(t—7)dz

Step 1 Plot x and h vs 7 since the convolution integral is
on .

Step 2 Flip h(z) around the vertical axis to obtain h(-z ).

Step 3 Shift h(-z ) by t to obtain h(t -z ).

Step 4 Multiply to obtain x(z ) h(t -7 ).

Step 5 Integrate on z to compute j X(z) h(t-7) d=.

Step 6 Increase t and repeat Steps 3-6.



Example 1

Let x(t) be the input to a LTI system with
unit impulse response h(t)

x(t)=e*u(t) a>0

h(t) = u(t)

Fort>0
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We can compute y(t) for t>0

t
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Example 2

Calculate the convolution of the
following signals

x(t) = e”u(-t)
h(t) =u(t —3)

For t<3, the convolution integral
becomes

t—3
y(t) = j'_oo e’’dr =1e*

For t-3>0, the product x(7)h(t-7) is
non-zero for -0<7<0, so the
convolution integral becomes

y)=| e*dr=1
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Properties of LTl Systems



Properties of Convolution

o0

x[n]*y[n]= > x[klyln-K]

K=—o0

X©)*y(t) = [ x(@)y(t-7)dz

=  Commutative
x[n]*y[n]=y[n]*x[n]
X(1)*y(0)=y(t)*x(t)

= Distributive
X[n]*(y1[n] + yzIn])=x[n]*ya[n] + x[n]*y2[n]
X(0)*(ya(t) + y2(t))=x(1)*y1(t) + x(t)*y2(t)

= Associative
X[n]*(ya[n]*y2[n])=(x[n]*y1[n])*ya[n]
X(0)*(y1()*y2(0)=(x(t)*y1(t))*y2(t)



Causality of LTI Systems

= A system is causal If its output depends only on the
past and the present values of the input signal.

= Consider the following for a causal DT LTI system:

o0

yIn]= > x[kIh[n—K]

k=—00

» Because of causality h[n-k] must be zero for k>n.
» In other words, h[n]=0 for n<O.

= Similarly for a CT LTI system to be causal
» h(t) = O for t<O.



Causality of LTI Systems

= So the convolution sum for a causal LTI system

becomes
n

y[n] = Z X[K]n[n—K]= i h{k]x[n—K]

k=—c0

= Similarly, the convolution integral for a causal LTI
system becomes
t

yIn]= [ x(z)h(t-7)dr = Th(f)x(t ~7)dr

—00

= S0, if a given system is causal, one can infer that its
Impulse response is zero for negative time values,
and use the above simpler convolution formulas.



Stability of LTI Systems

= A system is stable if a bounded input yields a
bounded output (BIBO). In other words, if |X[n]]| < ki
then |y[n]| < ko.

= Note that
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= Therefore, a DT system is stable if

S |h[k]| < o0
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= Similarly, a CT system is stable if

| |h)|dt <o



