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Discrete-Time LTI Systems



Representing Signals in Terms of Impulses

 Sifting property
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Impulse Response

 The response of a system H to the unit 

impulse [n] is called the impulse response, 

which is denoted by h[n]

h[n] = H[[n]]

System

H

[n] h[n]



Convolution Sum

 Let h[n] be the impulse response of an LTI system.

 Given h[n], we can compute the response y[n] of the 

system to any input signal x[n]. 

[n] h[n]



Convolution Sum

 Let h[n] be the impulse response of an LTI system.

 Given h[n], we can compute the response y[n] of the 

system to any input signal x[n]. 
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Convolution Sum

 Notation for convolution sum

 The characteristic of an LTI system is completely 
determined by its impulse response.
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Convolution Sum

 To compute the convolution sum

Step 1  Plot x and h vs k since the convolution sum is on k.

Step 2  Flip h[k] around the vertical axis to obtain h[-k].

Step 3  Shift h[-k] by n to obtain h[n-k].

Step 4  Multiply to obtain x[k]h[n-k].

Step 5  Sum on k to compute ∑ x[k]h[n-k].

Step 6  Change n and repeat Steps 3-6.
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Example

 Consider an LTI system that has an 

impulse response h[n] = u[n]

 What is the response when an input 

signal is given by 

x[n] = anu[n]

where 0<a <1?

 For n0,

 Therefore, 
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Convolution Sum

Demonstration



Continuous-Time LTI Systems



Recall the definition of approximated impulse function

Impulse Response

 The response of a system H to the unit impulse (t) is 

called the impulse response, which is denoted by h(t)

h(t) = H((t))

As D→0, D(t) → (t) and hD(t) → h(t)

System

H

(t) h(t)

D(t) hD(t)
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Staircase Approximation of x(t)

( ) ( ) ( )
k

x t x k t k


D D



 D  D D

...

...

-D 0   D 2D kD

x(t)

t



Convolution Integral

D(t) hD(t)



Convolution Integral



The derivation shows that a staircase approximation to the input

yields an approximation to the output

Now we take the limit. As ∆ → 0, ∆(t) → δ(t), h∆(t) → h(t), x∆(t) → 

x(t), and y∆(t) → y(t). Also, the sums approach the integrals

Convolution Integral
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Another Interpretation of Sifting Property
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To see the meaning of the sifting property

we approximate the impulse with a tall, narrow pulse δ∆(t-) 



Convolution Integral

 To compute the convolution integral

Step 1 Plot x and h vs τ since the convolution integral is 

on τ.

Step 2 Flip h(τ ) around the vertical axis to obtain h(-τ ).

Step 3 Shift h(-τ ) by t to obtain h(t -τ ).

Step 4 Multiply to obtain x(τ ) h(t -τ ).

Step 5 Integrate on τ to compute ∫ x(τ ) h(t -τ ) dτ.

Step 6 Increase t and repeat Steps 3-6.
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Example 1

 Let x(t) be the input to a LTI system with 

unit impulse response h(t)

 For t >0

 We can compute y(t) for t>0

 So for all t
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Example 2

 Calculate the convolution of the 
following signals

 For t<3, the convolution integral 
becomes

 For t-30, the product x()h(t-) is 
non-zero for -< <0, so the 
convolution integral becomes
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Properties of LTI Systems



Properties of Convolution

 Commutative 

x[n]*y[n]=y[n]*x[n]

x(t)*y(t)=y(t)*x(t)

 Distributive

x[n]*(y1[n] + y2[n])=x[n]*y1[n] + x[n]*y2[n]

x(t)*(y1(t) + y2(t))=x(t)*y1(t) + x(t)*y2(t)

 Associative

x[n]*(y1[n]*y2[n])=(x[n]*y1[n])*y2[n]

x(t)*(y1(t)*y2(t))=(x(t)*y1(t))*y2(t)

[ ]* [ ] [ ] [ ]

( )* ( ) ( ) ( )

k

x n y n x k y n k

x t y t x y t d  









 

 







Causality of LTI Systems

 A system is causal if its output depends only on the 

past and the present values of the input signal.

 Consider the following for a causal DT LTI system:

Because of causality h[n-k] must be zero for k>n.

In other words, h[n]=0 for n<0.

 Similarly for a CT LTI system to be causal

h(t) = 0 for t<0.
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Causality of LTI Systems 

 So the convolution sum for a causal LTI system 

becomes

 Similarly, the convolution integral for a causal LTI 

system becomes

 So, if a given system is causal, one can infer that its 

impulse response is zero for negative time values, 

and use the above simpler convolution formulas.
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Stability of LTI Systems

 A system is stable if a bounded input yields a 

bounded output (BIBO). In other words, if |x[n]| < k1

then |y[n]| < k2.

 Note that

 Therefore, a DT system is stable if

 Similarly, a CT system is stable if
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