Signals and Systems Linear Time-Invariant (LTI) Systems

Chang-Su Kim

Discrete-Time LTI Systems

Representing Signals in Terms of Impulses

Sifting property $x[n] = \sum x[k]\delta[n-k]$ $k = -\infty$ $+x[-2]\delta[n+2]$ $+x[-1]\delta[n+1]$ $+x[0]\delta[n]$ $+x[1]\delta[n-1]$ $+x[2]\delta[n-2]$ +•••

Impulse Response

- The response of a system H to the unit impulse δ[n] is called the impulse response, which is denoted by h[n]
 - ▶ h[n] = H[δ[n]]

- Let h[n] be the impulse response of an LTI system.
- Given h[n], we can compute the response y[n] of the system to any input signal x[n].

- Let h[n] be the impulse response of an LTI system.
- Given h[n], we can compute the response y[n] of the system to any input signal x[n].

- Let h[n] be the impulse response of an LTI system.
- Given h[n], we can compute the response y[n] of the system to any input signal x[n].

$$x[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k]$$

$$y[n] = H[x[n]]$$
$$= H\left[\sum_{k=-\infty}^{\infty} x[k]\delta[n-k]\right]$$
$$= \sum_{k=-\infty}^{\infty} H\left[x[k]\delta[n-k]\right]$$
$$= \sum_{k=-\infty}^{\infty} x[k]H\left[\delta[n-k]\right]$$
$$= \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

Notation for convolution sum

$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

 The characteristic of an LTI system is completely determined by its impulse response.

$$\begin{array}{c|c} \delta[n] & LTI & h[n] \\ x[n] & x[n] & x[n] & x[n] & x[n] \end{array}$$

To compute the convolution sum

$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

- **Step 1** Plot *x* and *h* vs *k* since the convolution sum is on *k*.
- **Step 2** Flip h[k] around the vertical axis to obtain h[-k].
- **Step 3** Shift h[-k] by *n* to obtain h[n-k].
- **Step 4** Multiply to obtain x[k]h[n-k].
- **Step 5** Sum on k to compute $\sum x[k]h[n-k]$.
- Step 6 Change *n* and repeat Steps 3-6.

Example

- Consider an LTI system that has an impulse response h[n] = u[n]
- What is the response when an input signal is given by $x[n] = \alpha^n u[n]$

where $0 < \alpha < 1$?

• For
$$n \ge 0$$
,
 $y[n] = \sum_{k=0}^{n} \alpha^{k}$

$$= \frac{1 - \alpha^{n+1}}{1 - \alpha}$$

Therefore,

$$y[n] = \left(\frac{1 - \alpha^{n+1}}{1 - \alpha}\right) u[n]$$

Demonstration

Continuous-Time LTI Systems

Impulse Response

• The response of a system H to the unit impulse $\delta(t)$ is called the impulse response, which is denoted by h(t)

•
$$h(t) = H(\delta(t))$$

► As $\Delta \rightarrow 0$, $\delta_{\Delta}(t) \rightarrow \delta(t)$ and $h_{\Delta}(t) \rightarrow h(t)$

Staircase Approximation of x(t)

$$x_{\Delta}(t) = \sum_{k=-\infty}^{\infty} x(k\Delta) \delta_{\Delta}(t - k\Delta) \Delta$$

The derivation shows that a staircase approximation to the input

$$x_{\Delta}(t) = \sum_{k=-\infty}^{\infty} x(k\Delta) \delta_{\Delta}(t - k\Delta) \Delta$$

yields an approximation to the output

$$y_{\Delta}(t) = \sum_{k=-\infty}^{\infty} x(k\Delta) h_{\Delta}(t-k\Delta)\Delta$$

Now we take the limit. As $\Delta \to 0$, ${}^{\mathsf{TM}}_{\Delta}(t) \to \delta(t)$, $h_{\Delta}(t) \to h(t)$, $x_{\Delta}(t) \to x(t)$, and $y_{\Delta}(t) \to y(t)$. Also, the sums approach the integrals

$$x(t) = \int_{-\infty}^{\infty} x(\tau) \delta(t - \tau) d\tau$$
 Sifting property
$$y(t) = \int_{-\infty}^{\infty} x(\tau) h(t - \tau) d\tau$$
 Convolution integral

Another Interpretation of Sifting Property

To see the meaning of the sifting property

$$x(t) = \int_{-\infty}^{\infty} x(\tau) \delta(t-\tau) d\tau$$

we approximate the impulse with a tall, narrow pulse $\delta_{\Delta}(t-\tau)$

To compute the convolution integral

$$y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$$

- **Step 1** Plot *x* and *h* vs τ since the convolution integral is on τ .
- **Step 2** Flip $h(\tau)$ around the vertical axis to obtain $h(-\tau)$.
- **Step 3** Shift $h(-\tau)$ by *t* to obtain $h(t \tau)$.
- **Step 4** Multiply to obtain $x(\tau) h(t \tau)$.
- **Step 5** Integrate on τ to compute $\int x(\tau) h(t \tau) d\tau$.
- Step 6 Increase *t* and repeat Steps 3-6.

Example 1

 Let x(t) be the input to a LTI system with unit impulse response h(t)

$$x(t) = e^{-at}u(t) \qquad a > 0$$
$$h(t) = u(t)$$

• For *t* >0

$$x(\tau)h(t-\tau) = \begin{cases} e^{-a\tau} & 0 < \tau < t \\ 0 & \text{otherwise} \end{cases}$$

We can compute y(t) for t>0

$$y(t) = \int_0^t e^{-a\tau} d\tau = -\frac{1}{a} e^{-a\tau} \Big|_0^t$$
$$= \frac{1}{a} \left(1 - e^{-at} \right)$$

• So for all t $y(t) = \frac{1}{a} \left(1 - e^{-at} \right) u(t)$

Example 2

 Calculate the convolution of the following signals

$$x(t) = e^{2t}u(-t)$$
$$h(t) = u(t-3)$$

For t<3, the convolution integral becomes

$$y(t) = \int_{-\infty}^{t-3} e^{2\tau} d\tau = \frac{1}{2} e^{2(t-3)}$$

• For t-3 \geq 0, the product $x(\tau)h(t-\tau)$ is non-zero for $-\infty < \tau < 0$, so the convolution integral becomes

$$y(t) = \int_{-\infty}^{0} e^{2\tau} d\tau = \frac{1}{2}$$

Properties of LTI Systems

Properties of Convolution

$$x[n] * y[n] = \sum_{k=-\infty}^{\infty} x[k]y[n-k]$$
$$x(t) * y(t) = \int_{-\infty}^{\infty} x(\tau)y(t-\tau)d\tau$$

Commutative

x[n]*y[n]=y[n]*x[n] x(t)*y(t)=y(t)*x(t)

Distributive

 $x[n]^{*}(y_{1}[n] + y_{2}[n]) = x[n]^{*}y_{1}[n] + x[n]^{*}y_{2}[n]$ $x(t)^{*}(y_{1}(t) + y_{2}(t)) = x(t)^{*}y_{1}(t) + x(t)^{*}y_{2}(t)$

Associative

 $x[n]^{*}(y_{1}[n]^{*}y_{2}[n]) = (x[n]^{*}y_{1}[n])^{*}y_{2}[n]$ $x(t)^{*}(y_{1}(t)^{*}y_{2}(t)) = (x(t)^{*}y_{1}(t))^{*}y_{2}(t)$

Causality of LTI Systems

- A system is causal if its output depends only on the past and the present values of the input signal.
- Consider the following for a causal DT LTI system: $y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$
 - Because of causality h[n-k] must be zero for k>n.
 - ▶ In other words, h[n]=0 for n<0.
- Similarly for a CT LTI system to be causal
 h(t) = 0 for t<0.

Causality of LTI Systems

 So the convolution sum for a causal LTI system becomes

$$y[n] = \sum_{k=-\infty}^{n} x[k]h[n-k] = \sum_{k=0}^{\infty} h[k]x[n-k]$$

Similarly, the convolution integral for a causal LTI system becomes

$$y[n] = \int_{-\infty}^{t} x(\tau)h(t-\tau)d\tau = \int_{0}^{\infty} h(\tau)x(t-\tau)d\tau$$

 So, if a given system is causal, one can infer that its impulse response is zero for negative time values, and use the above simpler convolution formulas.

Stability of LTI Systems

- A system is stable if a bounded input yields a bounded output (BIBO). In other words, if |x[n]| < k₁ then |y[n]| < k₂.
- Note that

$$\left|y[n]\right| = \left|\sum_{k=-\infty}^{\infty} x[n-k]h[k]\right| \le \sum_{k=-\infty}^{\infty} \left|x[n-k]\right| \left|h[k]\right| \le k_1 \sum_{k=-\infty}^{\infty} \left|h[k]\right|$$

Therefore, a DT system is stable if

$$\sum_{k=-\infty}^{\infty} \left| h[k] \right| < \infty$$

Similarly, a CT system is stable if

$$\int_{-\infty}^{\infty} \left| h(t) \right| dt < \infty$$