Signals and Systems

Fourier Series Representation of Periodic Signals

Chang-Su Kim

Introduction

Why do We Need Fourier Analysis?

 The essence of Fourier analysis is to represent a signal in terms of complex exponentials

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} = \dots + a_{-2}e^{-j2\omega_0 t} + a_{-1}e^{-j\omega_0 t} + a_0 + a_1e^{j\omega_0 t} + a_2e^{j2\omega_0 t} + \dots$$

- Many reasons:
 - Almost any signal can be represented as a series (or sum or integral) of complex exponentials
 - ★ Signal is periodic

 ← Fourier Series (DT, CT)

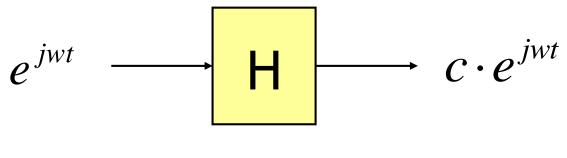
 Comparison

 Co
 - Signal is non-periodic
 - □ Fourier Transform (DT, CT) one by one

We will learn these (CTFS, DTFS, CTFT, DTFT) one by one

Response of an LTI system to a complex exponential is also a complex exponential with a scaled magnitude.

Response of LTI systems to Complex Exponentials (CT)



$$c = H(jw) = \int_{-\infty}^{\infty} h(\tau)e^{-jw\tau}d\tau$$

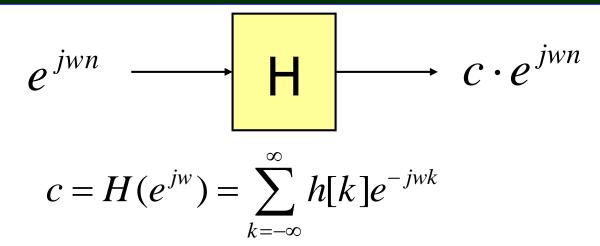
Property

$$x(t) = a_1 e^{jw_1 t} + a_2 e^{jw_2 t} + a_3 e^{jw_3 t}$$

$$\Rightarrow y(t) = a_1 H(jw_1) e^{jw_1 t} + a_2 H(jw_2) e^{jw_2 t} + a_3 H(jw_3) e^{jw_3 t}$$

- This is useful because almost every signal can be represented as a sum of complex exponential functions
- So we can easily compute the response of the system to almost every input signal using the above equation

Response of LTI systems to Complex Exponentials (DT)



Property

$$x[n] = a_1 e^{jw_1 n} + a_2 e^{jw_2 n} + a_3 e^{jw_3 n}$$

$$\Rightarrow y(t) = a_1 H(e^{jw_1}) e^{jw_1 n} + a_2 H(e^{jw_2}) e^{jw_2 n} + a_3 H(e^{jw_3}) e^{jw_3 n}$$

- This is useful because almost every signal can be represented as a sum of complex exponential functions
- So we can easily compute the response of the system to almost every input signal using the above equation

Continuous Time Fourier Series

How to represent a periodic function x(t) as

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} = \dots + a_{-2}e^{-j2\omega_0 t} + a_{-1}e^{-j\omega_0 t} + a_0 + a_1e^{j\omega_0 t} + a_2e^{j2\omega_0 t} + \dots$$

	continuous time	discrete time
periodic (series)	CTFS	DTFS
aperiodic (transform)	CTFT	DTFT

Harmonically Related Complex Exponentials

Basic periodic signal

$$e^{j\omega_0 t}$$

- Fundamental frequency: ω_0
- Fundamental period: $T = 2\pi / \omega_0$
- The set of harmonically related complex exponentials

$$\{\phi_k(t) = e^{jk\omega_0 t} = e^{jk(2\pi/T)t} \mid k = 0, \pm 1, \pm 2, \pm 3, ...\}$$

- Each $\phi_k(t)$ of the signals is periodic with T
- Thus, a linear combination of them is also periodic with period T:

$$\sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

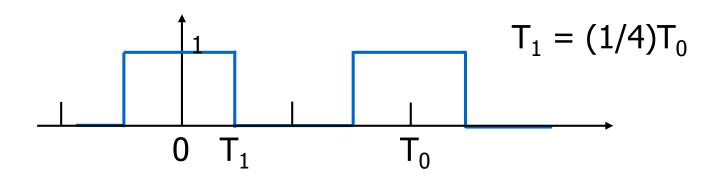
Continuous Time Fourier Series (CTFS)

• Most (all in engineering sense) functions with period $T=2\pi/w_0$ can be represented as a CTFS

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t},$$

$$a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$$

Example 1



$$a_{k} = \frac{1}{T_{0}} \int_{T_{0}} x(t) e^{-jk\omega_{0}t} dt = \frac{1}{T_{0}} \int_{-T_{1}}^{+T_{1}} e^{-jk\omega_{0}t} dt$$

$$=\frac{\sin(k\omega_0 T_1)}{k\pi} = \frac{\sin(\frac{k\pi}{2})}{k\pi}$$

$$=\frac{\sin(k\omega_0T_1)}{k\pi} = \frac{\sin(\frac{k\pi}{2})}{k\pi}.$$

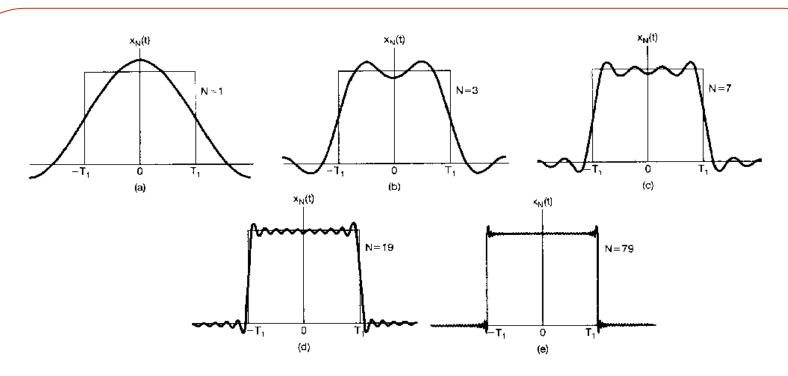
$$\begin{vmatrix} k & \dots & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 \\ a_k & \dots & 1/5\pi & 0 & -1/3\pi & 0 & 1/\pi & 1/2 & 1/\pi & 0 & -1/3\pi & 0 & 1/5\pi \end{vmatrix}$$

$$x(t) = \dots - \frac{1}{3\pi} e^{-j3w_0t} + \frac{1}{\pi} e^{-jw_0t} + \frac{1}{2} + \frac{1}{\pi} e^{jw_0t} - \frac{1}{3\pi} e^{j3w_0t} + \dots$$
$$= \frac{1}{2} + \frac{2}{\pi} \cos \omega_0 t - \frac{2}{3\pi} \cos 3\omega_0 t + \dots$$

Example 1 (continued)

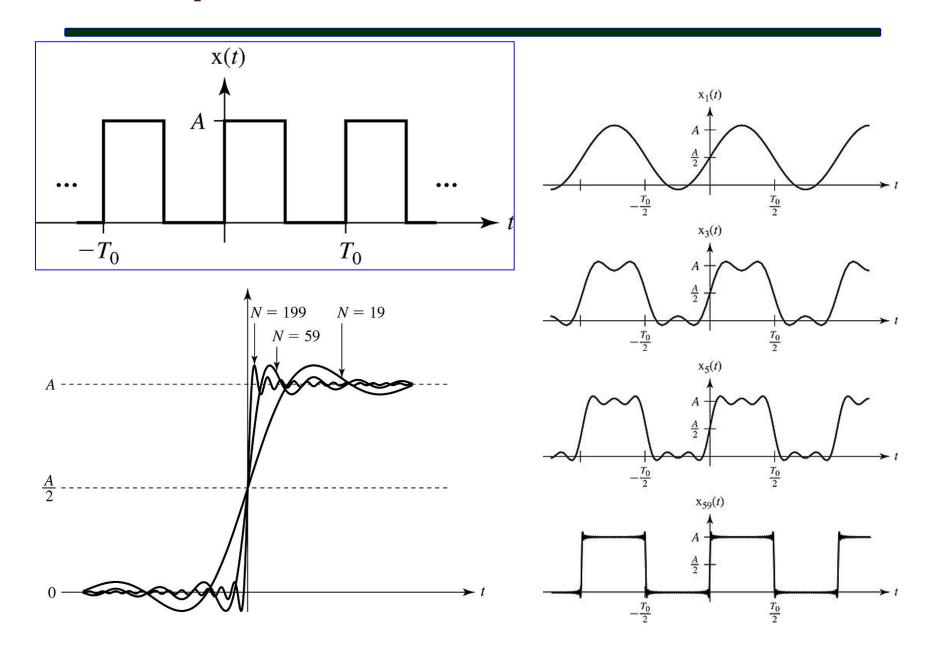
Finite Approximation $x_N(t)$ and Gibbs phenomenon

$$x_N(t) = \sum_{k=-N}^{N} a_k e^{jk\omega_0 t}$$

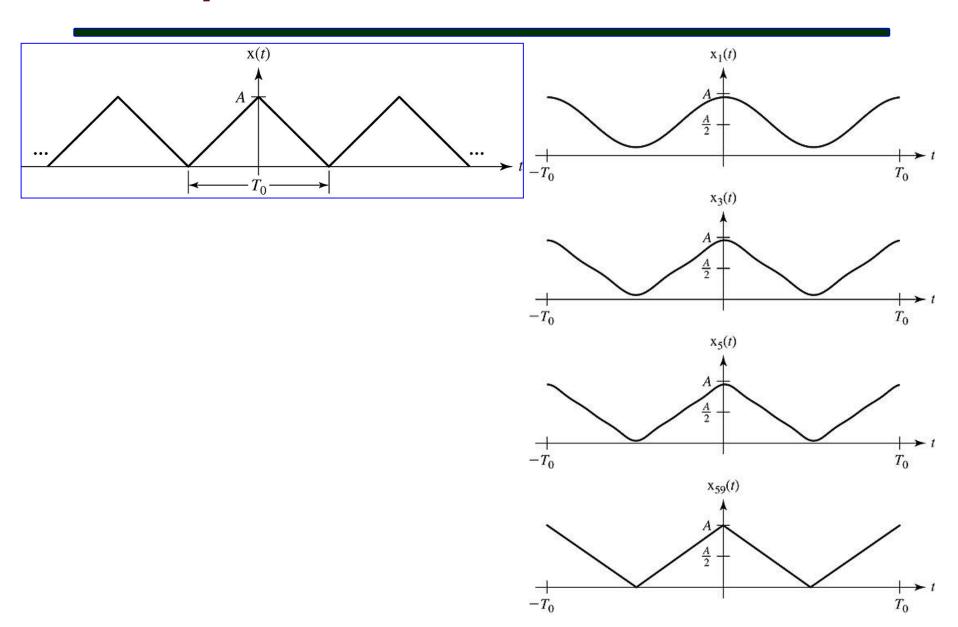


Overshoot is always about 9% of the height of the discontinuity

Example 2



Example 3



Continuous Time Fourier Series (CTFT)

Derivation of the formula

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t},$$

$$a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$$

Properties of CTFS

- There are 15 properties in Table 3.1 in page 206 of the textbook
- Do we have to remember them all?
 - No
 - Instead, familiarize yourself with them and be able to derive them whenever necessary
- They all come from the single formula

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t},$$

$$a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$$

Selected Properties

Given two periodic signals with same period T and fundamental frequency $\omega_0=2\pi/T$:

$$x(t) \leftrightarrow a_k$$
$$y(t) \leftrightarrow b_k$$

- 1. Linearity: $z(t) = Ax(t) + By(t) \leftrightarrow Aa_k + Bb_k$
- 2. Time-Shifting: $z(t) = x(t t_0) \leftrightarrow a_k e^{-jk\omega_0 t_0}$
- 3. Time-Reversal (Flip): $z(t) = x(-t) \leftrightarrow a_{-k}$
- 4. Conjugate Symmetry: $z(t) = x^*(t) \leftrightarrow a_{-k}^*$

Selected Properties

- 5. x(t) is real and even $\rightarrow a_k$ is real and even
- 6. x(t) is real and odd $\rightarrow a_k$ is purely imaginary and odd
- 7. Multiplication: $z(t) = x(t)y(t) \leftrightarrow \sum_{l=-\infty}^{\infty} a_l b_{k-l}$
- 8. Parseval's Relation: $\frac{1}{T} \int_{T} |x(t)|^{2} dt = \sum_{k=-\infty}^{\infty} |a_{k}|^{2}$

Other Forms of CTFS

Let f(x) be a function of period p = 2L. Then, its Fourier series is given by

$$f(x) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi}{L} x + b_n \sin \frac{n\pi}{L} x \right)$$

with the coefficients

$$a_0 = \frac{1}{2L} \int_{-L}^{L} f(x) dx,$$

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi}{L} x dx,$$

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi}{L} x dx.$$

Discrete Time Fourier Series

How to represent a periodic function x[n] with period N as

$$x[n] = \sum_{k=0}^{N-1} a_k e^{jk(2\pi/N)n} = a_0 + a_1 e^{j(2\pi/N)n} + a_2 e^{j2(2\pi/N)n} + \dots + a_{N-1} e^{j(N-1)(2\pi/N)n}$$

	continuous time	discrete time
periodic (series)	CTFS	DTFS
aperiodic (transform)	CTFT	DTFT

Discrete Time Period Functions with Period N

- x[n]=x[n+N]
 - ▶ Fundamental frequency $\omega_0 = 2\pi/N$
- $\{\phi_k[n] = e^{jk\omega_0n} = e^{jk(2\pi/N)n}: k=0, \pm 1, \pm 2, ...\}$ is a set of signals, consisting of all discrete-time complex exponentials that are periodic with period N

 - $\phi_{k}[n] = \phi_{k+N}[n] = \phi_{k+2N}[n] = ...$
 - Only N distinct signals in the set
- Therefore, while an infinite number of complex exponentials are required in CTFS, only N complex exponentials are used in DTFS.

Discrete Time Fourier Series (DTFS)

 All functions with period N can be represented as a DTFS

$$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk(\frac{2\pi}{N})n}$$

$$a_k = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-jk(\frac{2\pi}{N})n}$$

 $\sum_{n=\langle N\rangle}$: denotes the sum over any interval of N successive values of n.

Derive it!

 TABLE 3.2
 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

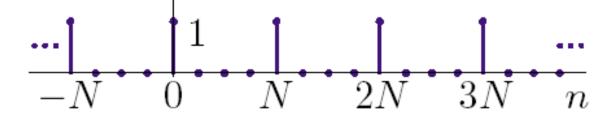
Property	Periodic Signal	Fourier Series Coefficients
	$x[n]$ Periodic with period N and $y[n]$ fundamental frequency $\omega_0 = 2\pi/N$	$ \begin{vmatrix} a_k \\ b_k \end{vmatrix} $ Periodic with period N
Linearity Time Shifting Frequency Shifting Conjugation Time Reversal	$Ax[n] + By[n]$ $x[n - n_0]$ $e^{jM(2\pi/N)n}x[n]$ $x^*[n]$ $x[-n]$ ($x[n/m]$, if n is a multiple of m	$Aa_k + Bb_k$ $a_k e^{-jk(2\pi/N)n_0}$ a_{k-M} a_{-k}^* a_{-k} 1 (viewed as periodic)
Time Scaling	$x_{(m)}[n] = \begin{cases} x[n/m], & \text{if } n \text{ is a multiple of } m \\ 0, & \text{if } n \text{ is not a multiple of } m \end{cases}$ (periodic with period mN)	$\frac{1}{m}a_k$ (viewed as periodic) with period mN
Periodic Convolution	$\sum_{r=\langle N\rangle} x[r]y[n-r]$	Na_kb_k
Multiplication	x[n]y[n]	$\sum_{l=\langle N angle} a_l b_{k-l}$
First Difference	x[n]-x[n-1]	$(1-e^{-jk(2\pi/N)})a_k$
Running Sum	$\sum_{k=-\infty}^{n} x[k] \begin{pmatrix} \text{finite valued and periodic only} \\ \text{if } a_0 = 0 \end{pmatrix}$	$\left(\frac{1}{(1-e^{-jk(2\pi/N)})}\right)a_k$
Conjugate Symmetry for Real Signals	x[n] real	$\left\{egin{aligned} a_k &= a_{-k}^* \ \Re e\{a_k\} &= \Re e\{a_{-k}\} \ \Im m\{a_k\} &= -\Im m\{a_{-k}\} \ a_k &= a_{-k} \ orall a_k &= -orall a_{-k} \end{aligned} ight.$
Real and Even Signals Real and Odd Signals	x[n] real and even $x[n]$ real and odd	a_k real and even a_k purely imaginary and odd
Even-Odd Decomposition of Real Signals	$\begin{cases} x_e[n] = \mathcal{E}\nu\{x[n]\} & [x[n] \text{ real}] \\ x_o[n] = \mathcal{O}d\{x[n]\} & [x[n] \text{ real}] \end{cases}$	$\Re e\{a_k\}$ $j \mathcal{G} m\{a_k\}$

Parseval's Relation for Periodic Signals

$$\frac{1}{N}\sum_{n=\langle N\rangle}|x[n]|^2=\sum_{k=\langle N\rangle}|a_k|^2$$

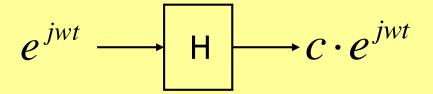
Example

x[n]



Fourier Series and LTI Systems

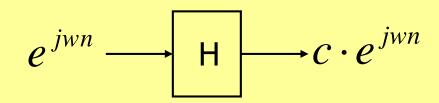
Frequency Response



$$c = H(jw) \square \int_{-\infty}^{\infty} h(\tau) e^{-jw\tau} d\tau,$$

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

$$\Rightarrow y(t) = \sum_{k=-\infty}^{\infty} a_k H(jkw_0) e^{jk\omega_0 t}$$



$$c = H(e^{jw}) \square \sum_{k=-\infty}^{\infty} h[k]e^{-jwk},$$

$$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk(\frac{2\pi}{N})n}$$

$$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk(\frac{2\pi}{N})n}$$

$$\Rightarrow y[n] = \sum_{k=\langle N \rangle} a_k H(e^{jk(\frac{2\pi}{N})}) e^{jk(\frac{2\pi}{N})n}$$

H(jw) or $H(e^{jw})$ are called frequency responses.

Example

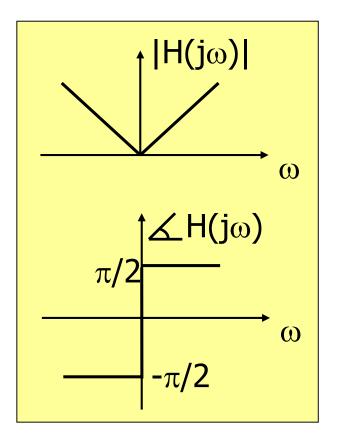
Example 3.16 in pp. 228 in textbook

Filtering

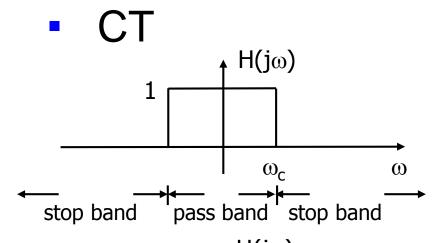
- Filtering is a process that changes the amplitude and phase of frequency components of an input signal
 - All LTI systems can be thought as filters
- Ex) Differentiator

$$y(t) = \frac{dx(t)}{dt} \rightarrow H(j\omega) = j\omega = |\omega| e^{j\phi}$$

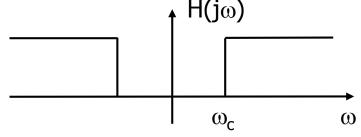
- High frequency component is magnified, while low frequency component is suppressed
- It is a kind of highpass filter



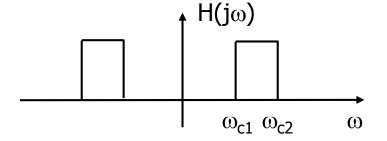
Lowpass, Bandpass and Highpass Filters



$$H(j\omega) = \begin{cases} 1 \text{ in pass band} \\ 0 \text{ in stop band} \end{cases}$$



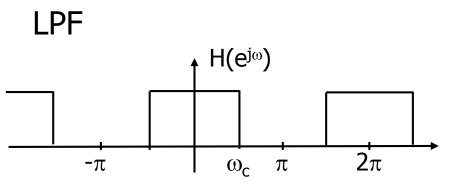
Ideal high-pass filter (HPF)

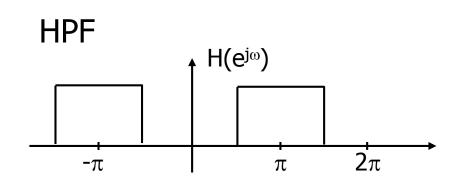


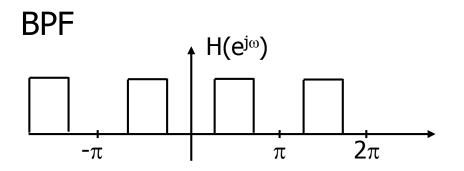
Ideal band-pass filter (BPF)

Lowpass, Bandpass and Highpass Filters

DT





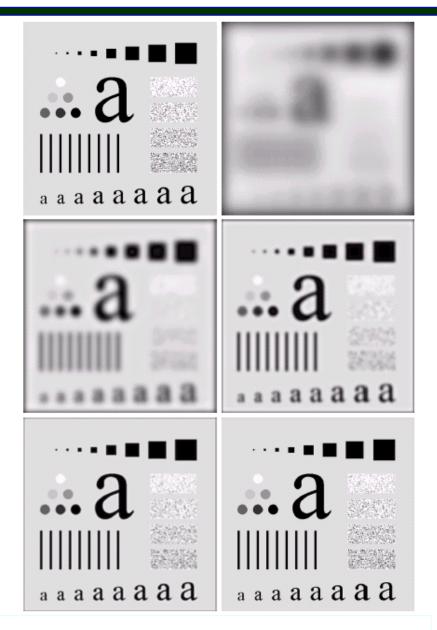


 $H(e^{j\omega})$ is periodic with period 2π

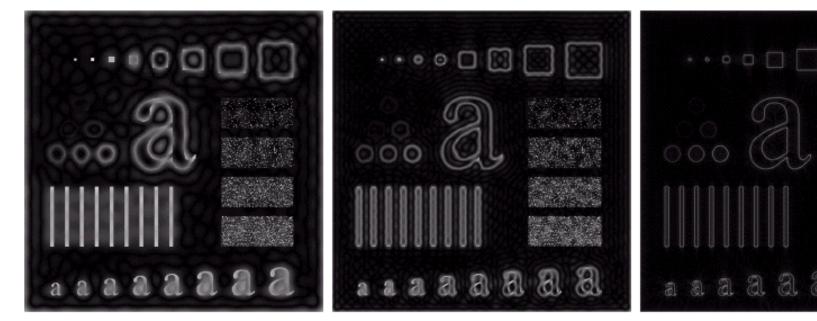
low frequencies: at around ω =0, \pm 2 π ,...

high frequencies: at around $\omega = \pm \pi$, $\pm 3\pi$, ...

Lowpass Filtering



Highpass Filtering

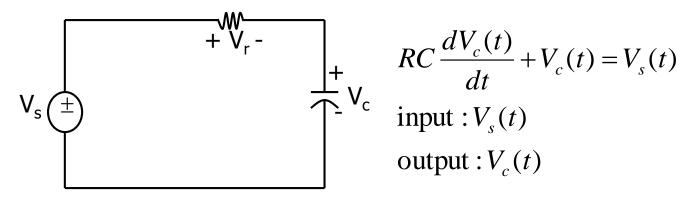


a b c

FIGURE 4.24 Results of ideal highpass filtering the image in Fig. 4.11(a) with $D_0 = 15$, 30, and 80, respectively. Problems with ringing are quite evident in (a) and (b).

Example of CT Filter

RC lowpass filter



$$\therefore RC \frac{d}{dt} \Big[H(j\omega)e^{j\omega t} \Big] + H(j\omega)e^{j\omega t} = e^{j\omega t}$$

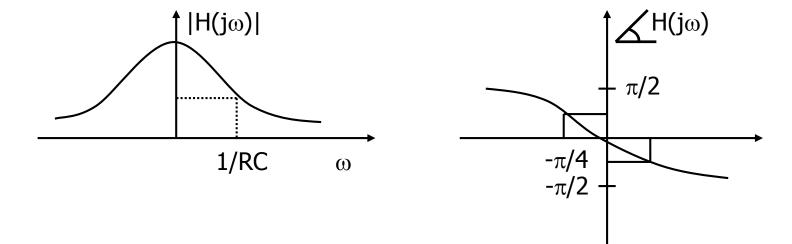
$$\therefore RC \cdot j\omega \cdot H(j\omega)e^{j\omega t} + H(j\omega)e^{j\omega t} = e^{j\omega t}$$

$$\rightarrow H(j\omega) = \frac{1}{1 + RCj\omega} = \frac{1}{\sqrt{1 + (RC\omega)^{2}}} e^{j\tan^{-1}(-RC\omega)}$$

Example of CT Filter (continued)

It is a lowpass filter

$$H(j\omega) = \frac{1}{1 + RCj\omega} = \frac{1}{\sqrt{1 + (RC\omega)^2}} e^{j\tan^{-1}(-RC\omega)}$$



Example of DT Filter 1

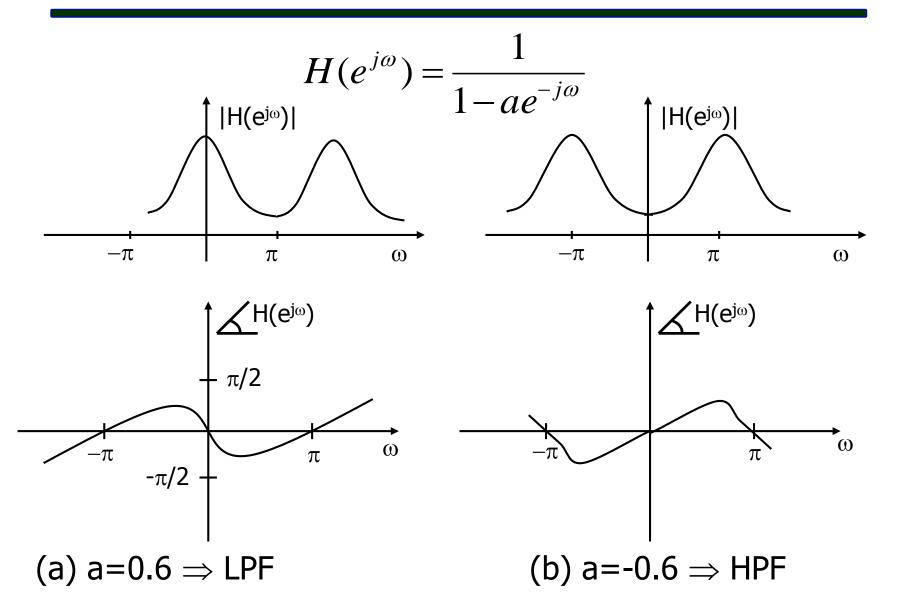
• y[n] - ay[n-1] = x[n]

We know if
$$x[n]=e^{j\omega n}$$
 then $y[n]=H(e^{j\omega})e^{j\omega n}$

$$\to H(e^{j\omega})e^{j\omega n} - aH(e^{j\omega})e^{j\omega(n-1)} = e^{j\omega n}$$

$$\to H(e^{j\omega}) = \frac{1}{1 - ae^{-j\omega}}$$

Example of DT Filter 1 (Continued)



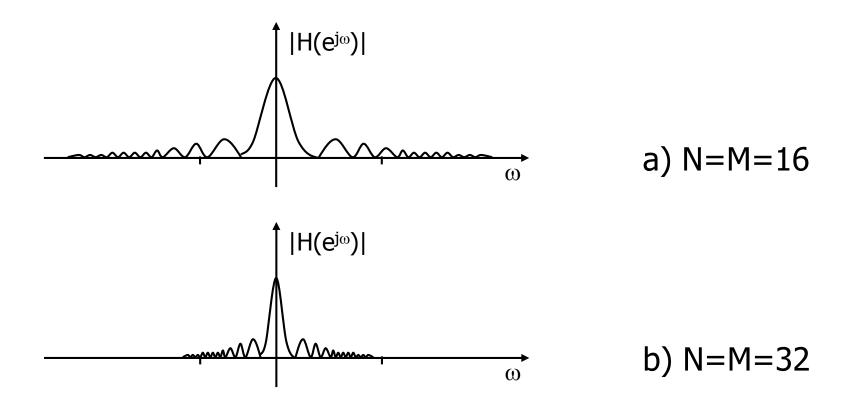
Example of DT Filter 2

•
$$y[n] = \frac{1}{N+M+1} \sum_{k=-N}^{M} x[n-k]$$

$$h[n] = \begin{cases} \frac{1}{N+M+1}, & for -N \le n \le M \\ 0, & otherwise \end{cases}$$

$$\Rightarrow H(e^{j\omega}) = \sum_{k=-\infty}^{\infty} h[k]e^{-j\omega k} = \frac{1}{N+M+1} \sum_{k=-N}^{M} e^{-j\omega k}$$

Example of DT Filter 2 (Continued)



It is a lowpass filter