Discrete-Time Fourier Transform

Chang-Su Kim

	continuous time	discrete time
periodic (series)	CTFS	DTFS
aperiodic (transform)	CTFT	DTFT

DTFT Formula and Its Derivation

DTFT Formula

DTFT

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$
$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}$$

cf) CTFT

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$
$$X(j\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$

Note that in DT case, X(e^{jω}) is periodic with period 2π and the inverse transform is defined as a integral over one period

Examples

Find the Fourier transforms of

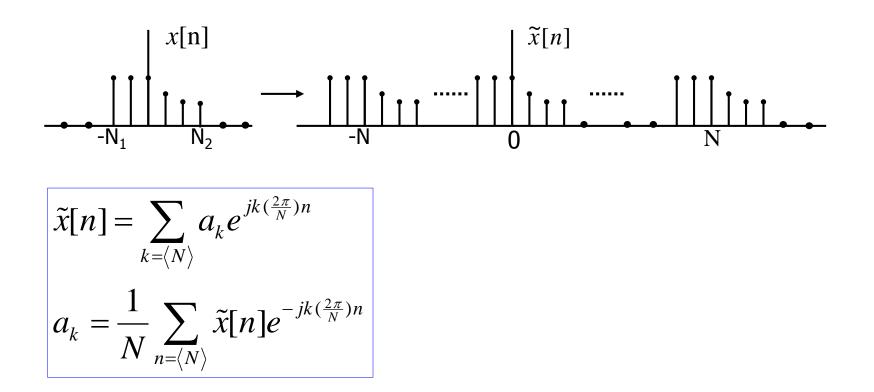
(a)
$$\left(\frac{1}{2}\right)^{n-1} u[n-1]$$

(b) $\delta[n-1] + \delta[n+1]$

• Find the inverse Fourier transform of

(a)
$$X(e^{jw}) = \begin{cases} 2j, & 0 < w \le \pi \\ -2j, & -\pi < w \le 0 \end{cases}$$

Derivation of DTFT from DTFS



As $N \to \infty$, $\tilde{x}[n] \to x[n]$

and the DTFS formula becomes the desired DTFT formula

DTFT of Periodic Functions

 Periodic functions can also be represented as Fourier Transforms

$$x[n] = \sum_{k = \langle N \rangle} a_k e^{jk\omega_0 n} \longleftrightarrow^F X(e^{j\omega}) = 2\pi \sum_{k = -\infty}^{\infty} a_k \delta(\omega - k\omega_0)$$

Examples

DTFT of periodic functions

(a) cosine function

 $x[n] = \cos w_0 n$

(b) periodic impulse train

$$y[n] = \sum_{k=-\infty}^{\infty} \delta[n - kN]$$

Selected Properties of DTFT

Shift in Frequency

$$e^{jw_0n}x[n] \longleftrightarrow^F X(e^{j(w-w_0)})$$
$$(-1)^n x[n] \xleftarrow{F} X(e^{j(w-\pi)})$$

This property can be used to convert a lowpass filter to a highpass one, or vice versa

Differentiation in Frequency

$$nx[n] \longleftrightarrow^{F} j \frac{dX(e^{jw})}{dw}$$

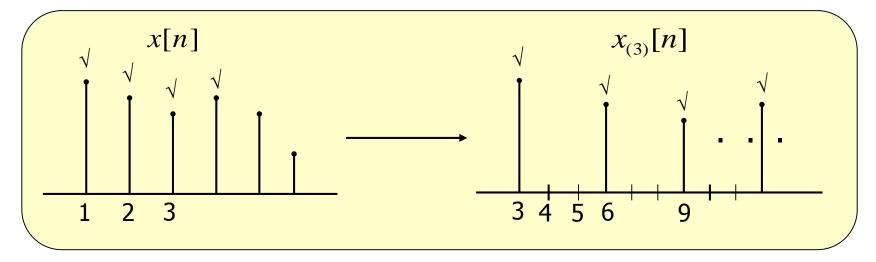
Parseval's Relation

$$\sum_{n=-\infty}^{\infty} \left| x[n] \right|^2 = \frac{1}{2\pi} \int_{2\pi} \left| X(e^{jw}) \right|^2 dw$$

Time Expansion

• For a natural number k, we define (x[n/k]). if *n* is an integer multiple

 $x_{(k)}[n] = \begin{cases} x[n/k], & \text{if } n \text{ is an integer multiple of } k \\ 0, & \text{otherwise} \end{cases}$



$$\Rightarrow x_{(k)}[n] \longleftrightarrow X(e^{jk\omega})$$

Convolution

$$y[n] = x[n] * h[n] \longleftrightarrow^{F} Y(e^{jw}) = X(e^{jw})H(e^{jw})$$

Multiplication

$$y[n] = x_1[n] x_2[n] \xleftarrow{F}{} Y(e^{j\omega}) = \frac{1}{2\pi} \int_{2\pi} X_1(e^{j\theta}) X_2(e^{j(\omega-\theta)}) d\theta$$

 Multiplication in time domain corresponds to the periodic convolution in frequency domain

Summary of Fourier Series and Transform Expressions

All the Four Formulas

	СТ	DT
Periodic	CTFS	DTFS
(series)	$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t},$ $a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$	$x[n] = \sum_{k = \langle N \rangle} a_k e^{jk(\frac{2\pi}{N})n}$ $a_k = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk(\frac{2\pi}{N})n}$
Aperiodic	CTFT	DTFT
(transform)	$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$ $X(j\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$	$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega$ $X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}$

Properties

	Time		Frequency	
x[n], x(t)	aperiodic	\Leftrightarrow	continuous $X(e^{j\omega}), X(j\omega)$))
x[n], x(t)	periodic	\Leftrightarrow	discrete $X(e^{j\omega}), X(j\omega)$	<i>v</i>)
x[n]	discrete	\Leftrightarrow	periodic $X(e^{j\omega})$	
x(t)	continuous	\Leftrightarrow	aperiodic $X(j\omega)$	

	СТ	DT
Periodic	CTFS	DTFS
(series)	$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$ $a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$ $\Rightarrow X(j\omega) = 2\pi \sum_{k=-\infty}^{\infty} a_k \delta(\omega - k\omega_0)$	$x[n] = \sum_{k = \langle N \rangle} a_k e^{jk(\frac{2\pi}{N})n}$ $a_k = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk(\frac{2\pi}{N})n} \text{ sampling of continuous} \text{ functions => discrete}$ $\Rightarrow X(e^{j\omega}) = 2\pi \sum_{k = -\infty}^{\infty} a_k \delta(\omega - k\omega_0)$
Aperiodic	CTFT	DTFT
(transform)	$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$ $X(j\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$	$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega$ $X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}$

Dualities

	СТ	DT
Periodic	CTFS	DTFS
(series)	$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t},$ $a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$	$x[n] = \sum_{k = \langle N \rangle} a_k e^{jk(\frac{2\pi}{N})n}$ $a_k = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk(\frac{2\pi}{N})n}$
Aperiodic	CTFT	DTFT
(transform)	$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$ $X(j\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$	$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega$ $X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}$

Dualities

	СТ	DT
Periodic	CTFS	DTFS
(series)	$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t},$ $a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$	$x[n] = \sum_{k = \langle N \rangle} a_k e^{jk(\frac{2\pi}{N})n}$ $a_k = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk(\frac{2\pi}{N})n}$
Aperiodic	CTFT	DTFT
(transform)	$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$ $X(j\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$	$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega$ $X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}$

Dualities

	СТ	DT
Periodic	CTFS	DTFS
(series)	$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t},$ $a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$	$x[n] = \sum_{k = \langle N \rangle} a_k e^{jk(\frac{2\pi}{N})n}$ $a_k = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk(\frac{2\pi}{N})n}$
Aperiodic	CTFT	DTFT
(transform)	$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$ $X(j\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$	$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega$ $X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}$

Causal LTI Systems Described by Difference Equations

Linear Constant-Coefficient Difference Equations

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]$$

- The DE describes the relation between the input x[n] and the output y[n] implicitly
- In this course, we are interested in DEs that describe causal LTI systems
- Therefore, we assume the initial rest condition

If x[n] = 0 for $n < n_0$, then y[n] = 0 for $n < n_0$

Frequency Response

 What is the frequency response H(e^{jw}) of the following system?

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]$$

It is given by

$$H(e^{jw}) = \frac{\sum_{k=0}^{M} b_k e^{-jkw}}{\sum_{k=0}^{N} a_k e^{-jkw}}$$

Example

Q)
$$y[n] - \frac{3}{4}y[n-1] + \frac{1}{8}y[n-2] = 2x[n],$$

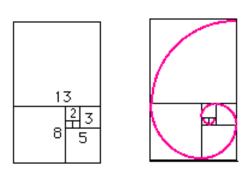
 $x[n] = \left(\frac{1}{4}\right)^n u[n].$ What is $y[n]$?

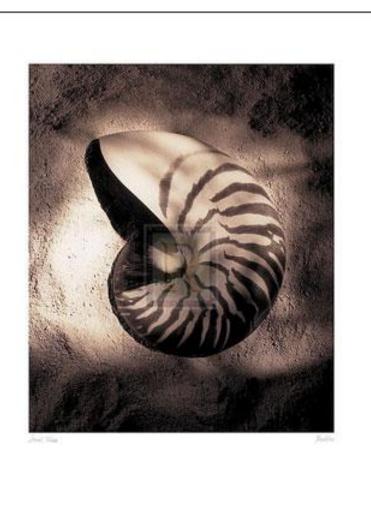
Analogy between Differential Equations and Difference Equations

- Many properties, learned in differential equations, can be applied to solve interesting problems described by difference equations
- Fibonacci sequence
 - ▶ $a_0 = a_1 = 1$
 - a_n = a_{n-1} + a_{n-2} (n≥2)
 - ► Golden ratio = 1.61803

Golden Ratio

 Golden rectangle is said to be the most visually pleasing geometric form





Golden Ratio

 Golden rectangle is said to be the most visually pleasing geometric form

