Discrete-Time Fourier Transform

Chang-Su Kim

	continuous time	discrete time
periodic (series)	CTFS	DTFS
aperiodic (transform)	CTFT	DTFT

DTFT Formula and Its Derivation

DTFT Formula

- DTFT

$$
\begin{aligned}
& x[n]=\frac{1}{2 \pi} \int_{2 \pi} X\left(e^{j \omega}\right) e^{j \omega n} d \omega \\
& X\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n}
\end{aligned}
$$

- cf) CTFT

$$
\begin{aligned}
& x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) e^{j \omega t} d \omega \\
& X(j \omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t
\end{aligned}
$$

- Note that in DT case, $X\left(e^{j \omega}\right)$ is periodic with period 2π and the inverse transform is defined as a integral over one period

Examples

- Find the Fourier transforms of
(a) $\left(\frac{1}{2}\right)^{n-1} u[n-1]$
(b) $\delta[n-1]+\delta[n+1]$
- Find the inverse Fourier transform of
(a) $X\left(e^{j w}\right)=\left\{\begin{array}{cc}2 j, & 0<w \leq \pi \\ -2 j, & -\pi<w \leq 0\end{array}\right.$

Derivation of DTFT from DTFS

$\tilde{x}[n]=\sum_{k=\langle N\rangle} a_{k} e^{j k\left(\frac{2 \pi}{N}\right) n}$
$a_{k}=\frac{1}{N} \sum_{n=\langle N\rangle} \tilde{x}[n] e^{-j k\left(\frac{2 \pi}{N}\right) n}$

As $N \rightarrow \infty, \tilde{x}[n] \rightarrow x[n]$
and the DTFS formula becomes the desired DTFT formula

DTFT of Periodic Functions

- Periodic functions can also be represented as Fourier Transforms

$$
x[n]=\sum_{k=\langle N\rangle} a_{k} e^{j k \omega_{0} n} \stackrel{F}{\longleftrightarrow} X\left(e^{j \omega}\right)=2 \pi \sum_{k=-\infty}^{\infty} a_{k} \delta\left(\omega-k \omega_{0}\right)
$$

Examples

- DTFT of periodic functions
(a) cosine function

$$
x[n]=\cos w_{0} n
$$

(b) periodic impulse train

$$
y[n]=\sum_{k=-\infty}^{\infty} \delta[n-k N]
$$

Selected Properties of DTFT

Shift in Frequency

$$
\begin{aligned}
& e^{j j_{0} n} x[n] \stackrel{F}{\longleftrightarrow} X\left(e^{j\left(w-w_{0}\right)}\right) \\
& (-1)^{n} x[n] \stackrel{F}{\longleftrightarrow} X\left(e^{j(w-\pi)}\right)
\end{aligned}
$$

- This property can be used to convert a lowpass filter to a highpass one, or vice versa

Differentiation in Frequency

$n x[n] \stackrel{F}{\longleftrightarrow} j \frac{d X\left(e^{j w}\right)}{d w}$

Parseval's Relation

$$
\left.\sum_{n=-\infty}^{\infty}|x[n]|^{2}=\frac{1}{2 \pi} \int_{2 \pi} \right\rvert\, X\left(e^{i w}\right)^{2} d w
$$

Time Expansion

- For a natural number k , we define

$$
x_{(k)}[n]=\left\{\begin{array}{cc}
x[n / k], & \text { if } n \text { is an integer multiple of } k \\
0, & \text { otherwise }
\end{array}\right.
$$

$$
\Rightarrow x_{(k)}[n] \stackrel{F}{\longleftrightarrow} \mathrm{X}\left(e^{j k \omega}\right)
$$

Convolution

$$
y[n]=x[n] * h[n] \stackrel{F}{r} \longrightarrow Y\left(e^{i v}\right)=X\left(e^{i j}\right) H\left(e^{j i v}\right)
$$

Multiplication

$$
y[n]=x_{1}[n] x_{2}[n] \stackrel{F}{\longleftrightarrow} Y\left(e^{j \omega}\right)=\frac{1}{2 \pi} \int_{2 \pi} X_{1}\left(e^{j \theta}\right) X_{2}\left(e^{j(\omega-\theta)}\right) d \theta
$$

- Multiplication in time domain corresponds to the periodic convolution in frequency domain

Summary of Fourier Series and Transform Expressions

All the Four Formulas

	CT	DT
	CTFS	
Periodic (series)	$x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{0} t}$,	DTFS
$a_{k}=\frac{1}{T} \int_{T} x(t) e^{-j k \omega_{0} t} d t$	$a_{k}=\frac{1}{N} \sum_{n=(N)} x[n] e^{-j k\left(\frac{2 \pi}{N}\right) n} a_{k} e^{j k\left(\frac{2 \pi}{N}\right) n}$	
	CTFT	DTFT
Aperiodic		
(transform)	$x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) e^{j o t} d \omega$	$x[n]=\frac{1}{2 \pi} \int_{2 \pi} X\left(e^{j \omega}\right) e^{j \omega n} d \omega$
$X(j \omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t$	$X\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n}$	

Properties

Time

Frequency
$\left.\begin{array}{clll}x[n], x(t) & \text { aperiodic } & \Leftrightarrow & \text { continuous } \\ x[n], x(t) & \text { periodic } & \Leftrightarrow & \text { discrete }\end{array}\right], X\left(e^{j \omega}\right), X(j \omega)$

	CT	DT
Periodic (series)	CTFS $\begin{aligned} & x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{0} t} \\ & a_{k}=\frac{1}{T} \int_{T} x(t) e^{-j k \omega_{0} t} d t \\ & \Rightarrow X(j \omega)=2 \pi \sum_{k=-\infty}^{\infty} a_{k} \delta\left(\omega-k \omega_{0}\right) \end{aligned}$	DTFS $\begin{aligned} & x[n]=\sum_{k=\langle N\rangle} a_{k} e^{j k\left(\frac{(2 \pi) n}{N}\right) n} \\ & a_{k}=\frac{1}{N} \sum_{n=\langle N\rangle} x[n] e^{-j k\left(\frac{2 \pi}{N}\right) n} \quad \text { sampling of continuous } \\ & \quad \text { functions => discrete } \\ & \Rightarrow X\left(e^{j \omega}\right)=2 \pi \sum_{k=-\infty}^{\infty} a_{k} \delta\left(\omega-k \omega_{0}\right) \end{aligned}$
Aperiodic (transform)	CTFT $\begin{aligned} & x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) e^{j \omega t} d \omega \\ & X(j \omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t \end{aligned}$	DTFT $\begin{aligned} & x[n]=\frac{1}{2 \pi} \int_{2 \pi} X\left(e^{j \omega}\right) e^{j \omega n} d \omega \\ & X\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} \end{aligned}$

Dualities

	CT	DT
Periodic (series)	CTFS $\begin{aligned} & x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{0} t}, \\ & a_{k}=\frac{1}{T} \int_{T} x(t) e^{-j k \omega_{0} t} d t \end{aligned}$	DTFS $\begin{aligned} & x[n]=\sum_{k=\langle N\rangle} a_{k} e^{j k\left(\frac{2 \pi}{N}\right) n} \\ & a_{k}=\frac{1}{N} \sum_{n=\langle N\rangle} x[n] e^{-j k\left(\frac{2 \pi}{N}\right) n} \end{aligned}$
Aperiodic (transform)	CTFT $\begin{aligned} & x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) e^{j \omega t} d \omega \\ & X(j \omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t \end{aligned}$	DTFT $\begin{aligned} & x[n]=\frac{1}{2 \pi} \int_{2 \pi} X\left(e^{j \omega}\right) e^{j \omega n} d \omega \\ & X\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} \end{aligned}$

Dualities

	CT	DT
Periodic (series)	CTFS $\begin{aligned} & x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{0} t}, \\ & a_{k}=\frac{1}{T} \int_{T} x(t) e^{-j k \omega_{0} t} d t \end{aligned}$	DTFS $\begin{aligned} & x[n]=\sum_{k=\langle N\rangle} a_{k} e^{j k\left(\frac{2 \pi}{N}\right) n} \\ & a_{k}=\frac{1}{N} \sum_{n=\langle N\rangle} x[n] e^{-j k\left(\frac{2 \pi}{N}\right) n} \end{aligned}$
Aperiodic (transform)	CTFT $\begin{aligned} & x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) e^{j \omega t} d \omega \\ & X(j \omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t \end{aligned}$	DTFT $\begin{aligned} & x[n]=\frac{1}{2 \pi} \int_{2 \pi} X\left(e^{j \omega}\right) e^{j \omega n} d \omega \\ & X\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} \end{aligned}$

Dualities

	CT	DT
Periodic (series)	CTFS $\begin{aligned} & x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{0} t}, \\ & a_{k}=\frac{1}{T} \int_{T} x(t) e^{-j k \omega_{0} t} d t \end{aligned}$	DTFS $\begin{aligned} & x[n]=\sum_{k=(N)} a_{k} k^{j k\left(\frac{2 \pi}{N}\right) n} \\ & a_{k}=\frac{1}{N} \sum_{n=(N)} x[n] e^{-j k\left(\frac{2 \pi}{N}\right) n} \end{aligned}$
Aperiodic (transform)	CTFT $\begin{aligned} & x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) e^{j \omega t} d \omega \\ & X(j \omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t \end{aligned}$	DTFT $\begin{aligned} & x[n]=\frac{1}{2 \pi} \int_{2 \pi} X\left(e^{j \omega}\right) e^{j \omega n} d \omega \\ & X\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} \end{aligned}$

Causal LTI Systems Described by Difference Equations

Linear Constant-Coefficient Difference Equations

$$
\sum_{k=0}^{N} a_{k} y[n-k]=\sum_{k=0}^{M} b_{k} x[n-k]
$$

- The DE describes the relation between the input $x[n]$ and the output $\mathrm{y}[\mathrm{n}]$ implicitly
- In this course, we are interested in DEs that describe causal LTI systems
- Therefore, we assume the initial rest condition

$$
\text { If } x[n]=0 \text { for } n<n_{0} \text {, then } y[n]=0 \text { for } n<n_{0}
$$

Frequency Response

- What is the frequency response $\mathrm{H}\left(\mathrm{e}^{\mathrm{j} w}\right)$ of the following system?

$$
\sum_{k=0}^{N} a_{k} y[n-k]=\sum_{k=0}^{M} b_{k} x[n-k]
$$

- It is given by

$$
H\left(e^{j w}\right)=\frac{\sum_{k=0}^{M} b_{k} e^{-j k w}}{\sum_{k=0}^{N} a_{k} e^{-j k w}}
$$

Example

Q) $y[n]-\frac{3}{4} y[n-1]+\frac{1}{8} y[n-2]=2 x[n]$,

$$
x[n]=\left(\frac{1}{4}\right)^{n} u[n] . \text { What is } y[n] ?
$$

Analogy between Differential Equations and Difference Equations

- Many properties, learned in differential equations, can be applied to solve interesting problems described by difference equations
- Fibonacci sequence
- $a_{0}=a_{1}=1$
- $a_{n}=a_{n-1}+a_{n-2}(n \geq 2)$
- Golden ratio $=1.61803$

Golden Ratio

- Golden rectangle is said to be the most visually pleasing geometric form

Golden Ratio

- Golden rectangle is said to be the most visually pleasing geometric form

