The z-Transform

Chang-Su Kim

Some figures have been excerpted from

- The lecture notes of Dr. Weiss in MIT (http://umech.mit.edu/weiss/lectures.html)

z-Transform is an extension of DTFT

- z-Transform

$$
X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}
$$

- DTFT

$$
X\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n}
$$

- z-Transform vs. DTFT

$$
\left.X(z)\right|_{z=e^{j i v}}=\text { DTFT of } x[n]
$$

Why do we need the extension?

- Consider the DTFT pair

$$
a^{n} u[n] \stackrel{F}{\longleftrightarrow} \frac{1}{1-a e^{-j w}} \quad|a|<1
$$

- What happens if $|\mathrm{a}| \geq 1$?
- z-Transform pair

ROC

 (region of convergence)- z-Transform can be applied to a broader class of signals than DTFT
- It is useful in studying a broader class of systems
- It is used to analyze the causality and stability of a system

Inverse z-Transform

$$
x[n]=\frac{1}{2 \pi j} \int\left[X(z) z^{n-1} d z\right.
$$

- Integral along a circular path in the complex number plane
- Its proper evaluation requires some knowledge on complex integral
- For example, refer to
x R. V. Churchill and J. W. Brown, Complex Variables and Applications, $5^{\text {th }}$ edition, McGraw-Hill
- We do not use this formula. Instead, we decompose $X(z)$ into a number of terms, each of which can be inverse transformed using Table 10.2.

Parts of Table 10.2

z-Transform Pair

(1) $\delta[n-m] \quad \Leftrightarrow \quad \mathrm{z}^{-\mathrm{m}}$
(2) $\alpha^{\mathrm{n}} \mathrm{u}[\mathrm{n}] \quad \Leftrightarrow \frac{1}{1-\alpha z^{-1}}$
(3) $-\alpha^{n} \mathrm{u}[-\mathrm{n}-1] \Leftrightarrow \frac{1}{1-\alpha z^{-1}}$
(4) $\left[\cos \omega_{0} n\right] u[n] \Leftrightarrow \frac{1-\left[\cos \omega_{0}\right] z^{-1}}{1-\left(2 \cos \omega_{0}\right) z^{-1}+z^{-2}}$
(5) $\left[\sin \omega_{0} \mathrm{n}\right] \mathrm{u}[\mathrm{n}] \Leftrightarrow \frac{\left[\sin \omega_{0}\right] z^{-1}}{1-\left[2 \cos \omega_{0}\right] z^{-1}+z^{-2}}$

All z except $\mathrm{z}=0$ or ∞

$$
|z|>|\alpha|
$$

$$
|z|<|\alpha|
$$

$$
|z|>1
$$

$|z|>1$

ROC should be specified

$$
\begin{array}{|ll|}
\hline a^{n} u[n] \longleftrightarrow z \frac{1}{1-a z^{-1}}, & |z|>|a| \\
-a^{n} u[-n-1] \longleftrightarrow z<\frac{1}{1-a z^{-1}}, & |z|<|a| \\
\hline
\end{array}
$$

ROC should be specified

Ex) $x[n]=7\left(\frac{1}{3}\right)^{n} u[n]-6\left(\frac{1}{2}\right)^{n} u[n]$

$$
X(z)=\frac{z\left(z-\frac{3}{2}\right)}{\left(z-\frac{1}{3}\right)\left(z-\frac{1}{2}\right)}, \quad|z|>\frac{1}{2}
$$

There are other sequences,
which generate the same $\mathrm{X}(\mathrm{z})$ but with different ROC's

ROC should be specified

Ex) $x[n]=$?

$$
X(z)=\frac{z\left(z-\frac{3}{2}\right)}{\left(z-\frac{1}{3}\right)\left(z-\frac{1}{2}\right)}, \quad \frac{1}{3}<|z|<\frac{1}{2}
$$

ROC should be specified

Ex) $x[n]=$?

$$
X(z)=\frac{z\left(z-\frac{3}{2}\right)}{\left(z-\frac{1}{3}\right)\left(z-\frac{1}{2}\right)}, \quad|z|<\frac{1}{3}
$$

Properties on ROC

- ROC of $X(z)$ consists of a single ring in the z-plane centered at the origin.

- ROC does not contain any poles.
- Suppose that $X(z)$ is rational.

1. Its ROC is bounded by poles.
2. If $x[n]$ is right sided, $R O C$ is the region in the z-plane outside the outermost pole.
3. If $\mathrm{x}[\mathrm{n}]$ is left sided, ROC is the region inside the innermost nonzero pole.

Selected Properties of Z-Transform

- z^{n} is the eigenfunction of LTI systems

If $x[n]=z^{n}, y[n]=H(z) z^{n}$.
$H(z)$ is called system function or transfer function.

Selected Properties of Z-Transform

- z^{-1} is a delay system

$$
x\left[n-n_{0}\right] \longleftrightarrow z^{-n_{0}} X(z)
$$

Selected Properties of Z-Transform

- Time reversal

$$
\begin{aligned}
& x[n] \longleftrightarrow X(z), \text { with ROC }=\mathrm{R} \\
& x[-n] \longleftrightarrow X\left(\frac{1}{z}\right), \text { with ROC }=\frac{1}{\mathrm{R}}
\end{aligned}
$$

Selected Properties of Z-Transform

- Convolution

$$
\begin{aligned}
& x_{1}[n] \longleftrightarrow X_{1}(z), \text { with } \mathrm{ROC}=\mathrm{R}_{1} \\
& x_{2}[n] \longleftrightarrow X_{2}(z), \text { with } \mathrm{ROC}=\mathrm{R}_{2} \\
& x_{1}[n] * x_{2}[n] \longleftrightarrow X_{1}(z) X_{2}(z), \text { with ROC containing } \mathrm{R}_{1} \cap \mathrm{R}_{2}
\end{aligned}
$$

Characterization of LTI Systems Using z-Transform

- Causality
- if the ROC of the transfer function is the exterior of a circle, including infinity
- Stability
- if the ROC of the transfer function contains the unit circle $|z|=1$.

LTI Systems Specified by Linear ConstantCoefficient Difference Equations

Ex) $y[n]+\frac{1}{4} y[n-1]-\frac{1}{8} y[n-2]=x[n]-\frac{7}{4} x[n-1]-\frac{1}{2} x[n-2]$

