Digital Signal Processing

Chap 1. Introduction

Chang-Su Kim

Course Outline

- Pre-requisites
 - Engineering Mathematics
 - Signals and Systems
- Course Homepage
 - Homepage: http://mcl.korea.ac.kr
- Questions
 - Ask questions any time, but preferably during the lectures
 - Office: Engineering Bldg, Rm 508
 - Tel: 02-3290-3217
 - Email: <u>changsukim@korea.ac.kr</u>

Course Outline

Assessment Methods

Assignments: 15%

Attendance & Quizzes: 15%

– Mid-term Exam: 30%

– Final Exam: 40%

Textbook

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, 3rd edition, Pearson, 2010.

Reference

 Sanjit K. Mitra, Digital Signal Processing: A Computer-Based Approach, McGraw Hill, 2006.

Course Outline

Week	Topics	Events
1	Chap 1. Introduction	
2	Chap 2. Discrete-Time Signals and Systems	
3	Chap 2. Discrete-Time Signals and Systems	
4	Chap 2. Discrete-Time Signals and Systems	
5	Chap 3. Z-Transform	
6	Chap 3. Z-Transform	
7	Chap 3. Z-Transform	
8	NA	Mid exam (29 OCT 2018)
9	Chap 4. Sampling of Continuous-Time Signals	
10	Chap 5. Transform Analysis of LTI Systems	
11	Chap 5. Transform Analysis of LTI Systems	
12	Chap 6. Structures for Discrete-Time Systems	
13	Chap 7. Filter Design Techniques	
14	Chap 8. DFT	
15	Chap 9. Computation of DFT	
16	NA	Final exam (17 DEC 2018)

DSP Systems (~2005)

iPod mini

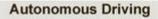
A thousand songs. Five cool colors.

DSP Systems (2006)

DSP Systems (2007)

DSP Systems (2008)

DSP Systems (2009)

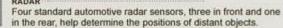


DSP Systems (2013)

Google's modified Toyota Prius uses an array of sensors to navigate public roads without a human driver. Other components, not shown, include a GPS receiver and an inertial motion sensor.

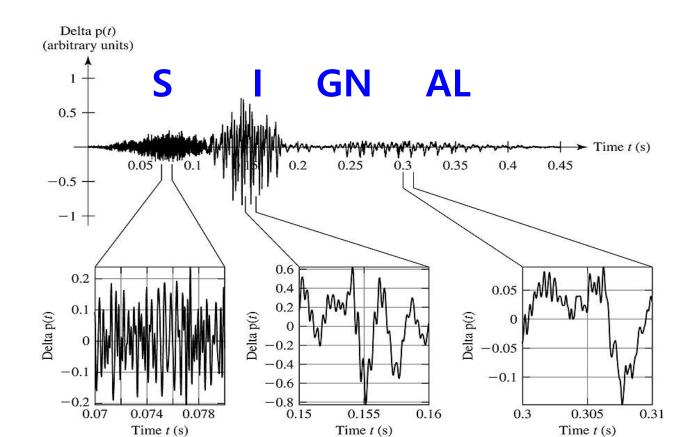
A rotating sensor on the roof scans more than 200 feet in all directions to generate a precise three-dimensional map of the car's surroundings.

A camera
mounted near the
rear-view mirror
detects traffic
lights and helps
the car's onboard
computers
recognize moving
obstacles like
pedestrians and
bicyclists.

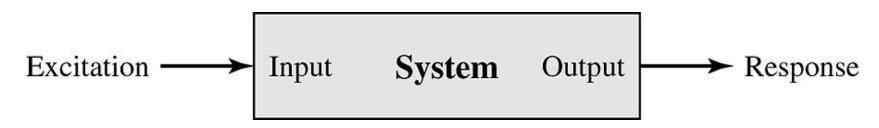


POSITION ESTIMATOR
A sensor mounted on the left rear wheel measures small

rear wheel measures small movements made by the car and helps to accurately locate its position on the map.

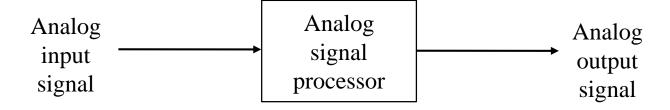


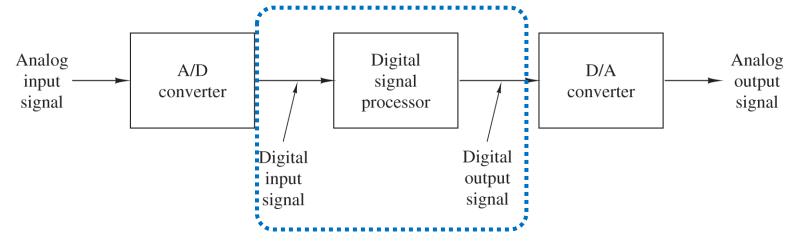
DSP Systems (2014)


Signals

- $s(t) = 1.05 t^2$
- $s(x, y) = 3x + 2xy + 10y^2$

Systems and Signal Processing


A system performs an operation on a signal


 Such operations are referred to as Signal Processing

Analog Signal Processing vs. Digital Signal Processing

Analog signal processing

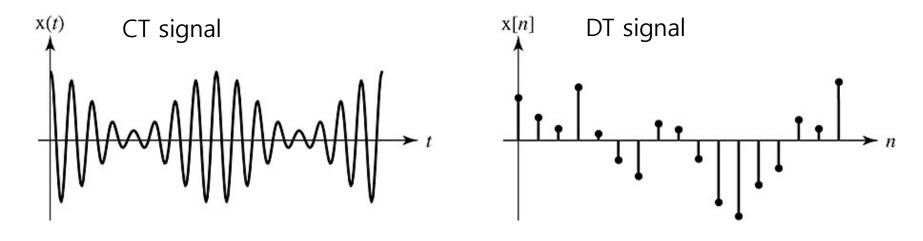
Digital signal processing

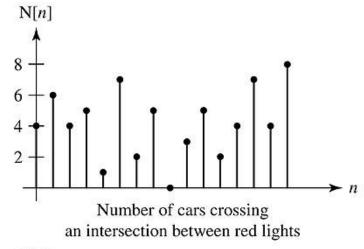
Advantages of DSP over Analog Signal Processing

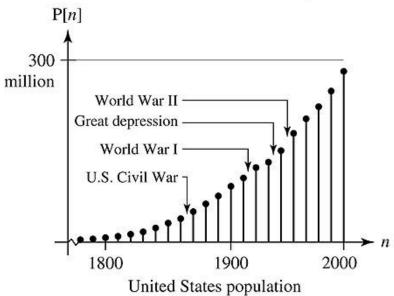
- Flexibility
- Accuracy
 - 16-bit, 32-bit, 64-bit digital computing
 - Extremely difficult to make accurate analog circuit components
- Easy storage and duplication
- Cost
 - Digital computing gets cheaper

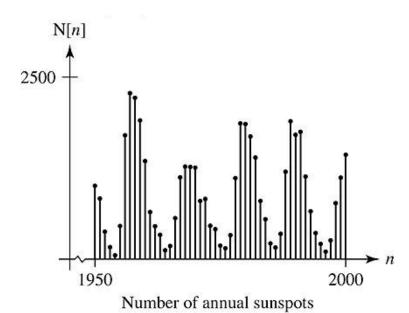
A color picture is a **three-channel**, **two-dimensional** signal

$$\mathbf{S}(x,y) = \begin{bmatrix} r(x,y) \\ g(x,y) \\ b(x,y) \end{bmatrix}$$




- Blue
- In this work, we focus on single-channel, one-dimensional signals
- The single variable is called time


Continuous-Time vs Discrete-Time Signals



- DT signals often arise
 - by selecting values of an analog signal at discrete-time instants
 - by accumulating a variable over a period of time

Examples of Discrete-Time Signals

Continuous-Valued vs Discrete-Valued Signals

- A discrete-time signal having a set of discrete values is called a digital signal
- Digitization = sampling (time) + quantization (value)

Analog-to-Digital Conversion

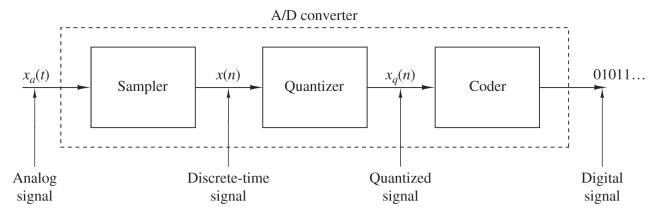


Figure 1.4.1 Basic parts of an analog-to-digital (A/D) converter.

Sampling

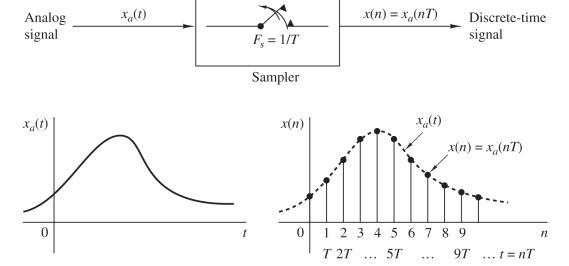
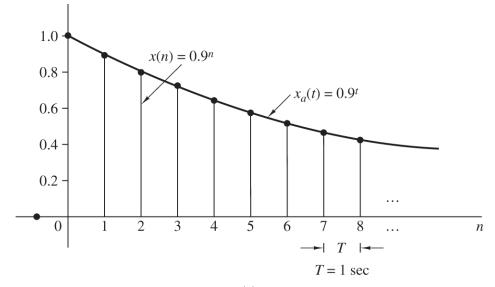



Figure 1.4.3 Periodic sampling of an analog signal.

Analog-to-Digital Conversion

Quantization

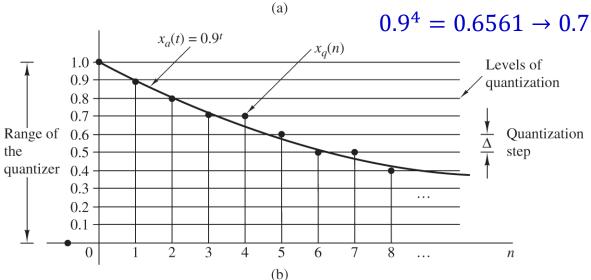


Figure 1.4.7 Illustration of quantization.

Digital-to-Analog Conversion

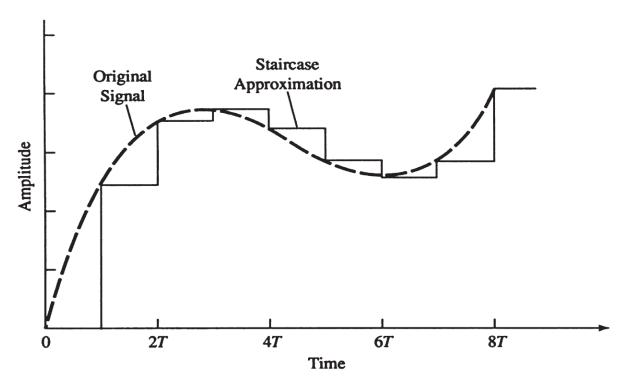


Figure 1.4.2 Zero-order hold digital-to-analog (D/A) conversion.

Examples

DSP LEADS TO ...

Dehazing

입력영상 결과영상

Deraining

Video Deraining and Desnowing

Denoising and Enhancement

Object Tracking

IMAGE PROCESSING AND COMPUTER VISION

Computer Vision

Top publications - English Learn more

Publication	h5-index	h5-median
1. Nature	355	495
2. The New England Journal of Medicine		495
3. Science	311	431
4. The Lancet	248	381
5. Cell	223	343
-·· -·································		
65. IEEE Conference on Computer Vision and Pattern Recognition, CVPR		167

Opportunities