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Segmentation and Grouping

* Segmentation

— Obtain compact representation from an
Image/motion sequence/set of tokens

— Grouping (or clustering)
» collect together tokens that belong together

— Fitting

* associate a model with tokens




General iIdeas

« Tokens « Bottom up segmentation

— whatever we need to group — tokens belong together

(pixels, points, surface because they are locally
elements, etc.) coherent

« Top down segmentation These two are not mutually

— tokens belong together exclusive
because they lie on the same
object
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Why do these tokens seem to belong
together?






Basic ideas of grouping by humans

» Gestalt (group or whole)

— Gestalt school (k) of psychologist

— The tendency of the visual system to assemble
components of a picture together and
perceive them together

» Gestaltqualitat (gestalt properties)

— A set of factors that affect which elements
should be grouped together



Perceiving objects as groups
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Grouping in case of occlusion
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Common Region Cues
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Example 1. Shot Boundary
Detection

* Find the shots in a sequence of + Possible distances

video — frame differences

— shot boundaries usually result — histogram differences
in big differences between

_ — edge differences
successive frames

Applications:

— representation for movies, or
video sequences

« Strategy:
— compute interframe distances

— declare boundaries where
these are big

* find shot boundaries

* obtain "most
representative” frame

— supports search



ct. Video Tapestry

Video Tapestries with Continuous Temporal Zoom

Connelly Barnes' Dan B Goldman? Eli Shechtman? Adam Finkelstein'
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F igure 1: A multiscale tapestry represents an input video as a seamless and zoomable summary image which can be used to navigate through the video. This visualization
eliminates hard borders between frames, providing spatial continuity and also continuous zooms to finer temporal resolwions. This figure depicts three discrete scale levels for

the film Elephants Dream (Cowurtesy of the Blender Foundation). The lines between each scale level indicate the corresponding domains between scales. See the video 1o view the
continuous zoom animation between the scales. For Copyright reasons, the print and electronic versions of this paper contain different imagery in Figures 1, 4, 6, and 7.




Example 2: Background
Subtraction

If we know what the
background looks like, it is
easy to identify interesting
pixels

Applications
— Person in an office
— Tracking cars on a road
— surveillance

« Approach:

use a moving average to
estimate background image

subtract from current frame

large absolute values are
interesting pixels

* trick: use morphological
operations to clean up
pixels
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Segmentation as Clustering

 Clustering

— Cluster together pixels, tokens, and etc that
belong together

— Agglomerative clustering

« combine two close clusters to make one
— Divisive clustering

* split a cluster along best boundary




Agglomerative Clustering

« Each item is regarded as a cluster, and clusters
are recursively merged to yield a good clustering

 Clustering by merging
« A bottom-up approach

Agglomerative Clustering

Make each point a separate cluster
Until the clustering is satisfactory

Merge the two clusters with the smallest
inter-cluster distance

End




Divisive Clustering

* The entire set is regarded as a cluster, and then

clusters are recursively split to yield a good
clustering

 Clustering by splitting
* A top-down approach

Divisive Clustering

Construct a single cluster containing all points
Until the clustering is satisfactory

Split the cluster that yiels the two components
with the largest inter-cluster distance

End




Inter-Cluster Distance

* Single-link clustering
d(A,B)= min d(a,b)

acA,beB

— It may yield elongated clusters
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Inter-Cluster Distance

» Complete-link clustering
d(A,B)= max d(a,b)

acAbeB

— It usually yields round clusters




Inter-Cluster Distance

» Group-average cIustering

3" d(a,b)

acAbeB

d(A B) =

A \B

* It usually yields round clusters

——




Dendrogram for Agglomerative
Clustering
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K - Means

 Application of vector quantization
— Choose a fixed number of clusters

— Choose cluster centers and point-cluster allocations
to minimize error

— Repeat until centers converge

 Error or cost function
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K - Means

K-Means Algorithm

Choose k data points to act as cluster
centers

Until the cluster centers are unchanged

e Allocate each data point to cluster
whose center is nearest (NN rule)

* Replace the cluster centers with the
mean of the elements in their clusters
(centroid rule)

End































K - Means

Clusters on intensity Clusters on color

K-means clustering using intensity alone and color alone
(5 clusters in each case)



Image

Clusters
using color
alone

(11 clusters)




K-means using colour and
position, 20 segments




Graph Theoretic Clustering

* Graph cut

— Represent an image using a weighted graph
* Pixels become nodes
« Affinity (similarity) becomes edge weights

— Cut up this graph to get sub-graphs with strong
Interior links




Graph Theoretic Clustering

* Measuring affinity
— Intensity

aff (x,y)= eXP{‘( 1203)@1 ()-10) )}
— Distance

i e9)=el - 152 )l

— Texture

ae0)= i V500 (e 00 )



Graph Theoretic Clustering

 Scale(weight) affects affinity




Graph Theoretic Clustering

* How to shuffle the affinity matrix to obtain block
diagonal structure?

— Beyond the scope of the class



Normalized Cut

Partitioning a graph G = (V, E)
« Cut
cut(4,B) = Z w(u, v)

UeA,veB
 Association

assoc(A4,V) = Z w(u, v)

UeAi,veVv
Normalized cut
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Fig. 1. A case where minimum cut gives a bad parition.

cut(4, B) cut(4, B)

Ncut(4,B) = +

assoc(A,V) assoc(B,V)

J. Shi and J. Malik, Normalized cuts and image segmentation, TPAMI 2000.



Normalized Cut

« Laplacian Matrix D — W
— W: similarity matrix w;; = w(v;, v;)

— D:diagonal with d;; = ¥ ; w;;

* The solution to the normalized cut problem
Y (D — W)y
y  y'Dy
subjecttoy; =2 or —2band y'D1 =0

* |tis a generalized eigenvalue problem
— The eigenvector for the 2" smallest eigenvalue gives the solution

J. Shi and J. Malik, Normalized cuts and image segmentation, TPAMI 2000.



Normalized Cut
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J. Shi and J. Malik, Normalized cuts and image segmentation, TPAMI 2000.



ANOTHER EXAMPLE



Multiple Random Walkers

MRW Clustering on Point Data




Multiple Random Walkers and Their Application to Image Cosegmentation

Chulwoo Lee Won-Dong Jang
School of Electrical Engineering
Korea University

{chulwoo, wdjang}@mcl.korea.ac.kr

Abstract

A graph-based system to simulate the movements and in-
teractions of multiple random walkers (MRW) is proposed
in this work. In the MRW system, multiple agents traverse
a single graph simultaneously. To achieve desired interac-
tions among those agents, a restart rule can be designed,
which determines the restart distribution of each agent ac-
cording to the probability distributions of all agents. In par-
ticular, we develop the repulsive rule for data clustering. We
illustrate that the MRW clustering can segment real images
reliably. Furthermore, we propose a novel image cosegmen-
tation algorithm based on the MRW clustering. Specifically,
the proposed algorithm consists of two steps: inter-image
concurrence computation and intra-image MRW clustering.
Experimental results demonstrate that the proposed algo-
rithm provides promising cosegmentation performance.

Jae-Young Sim
School of ECE
UNIST

jysimBunist.ac.kr

Chang-Su Kim

School of Electrical Engineering
Korea University

changsukimfkorea.ac.kr

one another and form their own dominant regions. Eventu-
ally, the power balance among the agents is achieved, and
their distributions converge. By comparing the stationary
distributions, clustering can be achieved. We demonstrate
that this MRW process can cluster point data and segment
real images reliably.

Moreover, we apply the proposed MRW system to the
problem of segmenting similar images jointly. Recently, at-
tempts to extract common foreground objects from a set of
similar images have been made. This approach, called co-
segmentation, was first addressed by Rother et al. [23] and
has been researched actively [20, 12, 14, 3.5, 30, 7, 24, 31].
Compared with segmenting each image independently, it is
advantageous to delineate similar objects from multiple im-
ages. However, since repeating image features do not al-
ways imply the most important and informative parts of a
scene, cosegmentation is still a challenging vision problem.

For cosegmentation, we introduce the notion of concur-
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We can make the agents interact with one another, by
determining the restart distribution as
ri) = (1— 8l 4 8t (P®) (6)
where the function ¢, is referred to as the restart rule.
It determines a probability distribution ¢, from P!} =

{p“’] 11~ Which is the set of the probability distributions
of all agents at time t.

In (6), ¢ is a constant within [0, 1], called the cooling
factor. In an extreme case of & = (0, the restart distribu-
tion r'g:' becomes time-invariant, and the MRW recursion
of each agent in (3) 1s identical with the RWR recursion in
(3). In the other extreme case of 4 = 1, r“] — ¢, (P)

(t—1)

does not directly depend on the previous distribution r,,

Suppose that 0 < 4 < 1. We have
Voo = 810 (PD) =1 Ve < 8. (D)

||I‘L - r,l'\,

IS] 'if]'||m < ,5?";#{1 — 4). So each

e]ement n the restart dlstribution rg':' is a Cauchy sequence

in terms of time ¢. Since a Cauchy sequence in [ is conver-

gent, the restan distribution rg} converges to a fixed distri-

bution | .. Therefore, as ¢ approaches infinity, the MRW
recursion in (5) becomes the RWR recursion, and agent %
has a stationary distribution eventually. To summarize we
have the following convergence theorem.

LLD LI L¥IENTY ﬂ__‘rﬂl\.-lll.,

pr = [p(xilwr), -+, plxn|wr)]” (9)

where p(x;|w;.) is the probability that agent & is found at
node i. According to the Bayes™ rule, the posterior proba-
bility 1s given by

P{Xﬂwk}}?{%]
S pclenpler)’ (10

which represents the probability that node i 1s occupied by
agent k. The repulsive restart rule sets the ith element of

¢ (P) as

plwrlx;) =

Pri = o - plwr|x;) - p(xi|wg) (11)

where « is a normalizing factor to make ¢, (P) a probabil-
ity distribution. Suppose that agent % 1s dominant at node 7,
i.e., it has a high posterior probability p(wy|x;) and a high
likelihood p(x;|ws). Then, it restarts at that node with a
high probability, and tends to become more dominant. This
has the effect that a dominant agent at a node repels the
other agents. The repulsive restart rule in (11) can be rewrit-
ten as

¢x(P) = aQrpr (12)

where ;. is a diagonal matrix whose (1, i )th element is the
posterior probability p(wr|x;).

For clustering, we perform the MRW simulation in (5)
and (6), by employing the restart rule in (12), to obtain the
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