Chapter 14. Complex Integration

Chang-Su Kim

[^0]I. Line Integral
\star Line integral of f along a curve C
$$
\int_{C} f(z) d z
$$

The curve is given by

The line integral is given by the limit of the summation

$$
\begin{aligned}
S_{n} & =\sum_{m=1}^{n} f\left(z_{m-1}\right) \Delta z_{m} \\
& =\sum_{m=1}^{n} f\left(z_{m-1}\right)\left(z_{m}-z_{m-1}\right) .
\end{aligned}
$$

In other words,

$$
\begin{aligned}
\int_{C} f(z) d z & \triangleq \lim _{n \rightarrow \infty} S_{n} \\
& =\lim _{n \rightarrow \infty} \sum_{m=1}^{n} f\left(z_{m-1}\right)\left(z_{m}-z_{m-1}\right) .
\end{aligned}
$$

Also, let $f(z)=u(z)+i v(z)$. Then, we have

$$
\begin{aligned}
S_{n} & =\sum_{m}\left(u\left(z_{m-1}\right)+i v\left(z_{m-1}\right)\right)\left(\Delta x_{m}+i \Delta y_{m}\right) \\
& =\sum_{m} u \Delta x_{m}-\sum_{m} v \Delta y_{m}+i\left[\sum_{m} u \Delta y_{m}+\sum_{m} v \Delta x_{m}\right]
\end{aligned}
$$

and

$$
\int_{C} f(z) d z=\int_{C} u d x-\int_{C} v d y+i\left[\int_{C} u d y+\int_{C} v d x\right] .
$$

- Evaluating line integrals: method 1

$$
\int_{C} f(z) d z=\int_{a}^{b} f[z(t)] \dot{z}(t) d t
$$

This is because

$$
\begin{aligned}
\Delta z_{m} & =z_{m}-z_{m-1} \\
& \cong \dot{z}\left(t_{m-1}\right)\left(t_{m}-t_{m-1}\right) \\
& =\dot{z}\left(t_{m-1}\right) \Delta t_{m}
\end{aligned}
$$

Then,

$$
\begin{aligned}
S_{n} & =\sum_{m=1}^{n} f\left(z_{m-1}\right) \dot{z}\left(t_{m-1}\right) \Delta t_{m} \\
& =\sum_{m=1}^{n} f\left[z\left(t_{m-1}\right)\right] \dot{z}\left(t_{m-1}\right) \Delta t_{m}
\end{aligned}
$$

and

$$
\lim _{n \rightarrow \infty} S_{n}=\int_{a}^{b} f[z(t)] \dot{z}(t) d t
$$

* Ex 1) Let C be the unit circle, which has the counterclockwise orientation.

$$
\oint_{C} \frac{1}{z} d z ?
$$

\star Ex 3)

- Evaluating line integrals: method 2
* Theorem

Suppose that $f(z)$ is analytic in a simply connected domain D. Then, there exists an indefinite integral of $f(z)$ in D, i.e., there exists $F(z)$ such that $F^{\prime}(z)=f(z)$. Also, for all paths in D joining two points z_{0} and z_{1}

$$
\int_{z_{0}}^{z_{1}} f(z) d z=F\left(z_{1}\right)-F\left(z_{0}\right)
$$

Note that D is called a simply connected domain, if every closed curve without self intersections encloses only points of D.

$\star \operatorname{Ex} 1)$

$$
\int_{0}^{1+i} z^{2} d z=\left.\frac{1}{3} z^{3}\right|_{0} ^{1+i}=\frac{1}{3}(1+i)^{3}
$$

* Ex 2)

$$
\begin{aligned}
\int_{-i}^{i} \frac{1}{z} d z & =\operatorname{Ln} i-\operatorname{Ln}(-i) \\
& =i \frac{\pi}{2}-i\left(-\frac{\pi}{2}\right) \\
& =i \pi
\end{aligned}
$$

- ML-inequality

Let $|f(z)| \leq M$ on C and L denote the length of C. Then,

$$
\left|\int_{C} f(z) d z\right| \leq M L
$$

II. Cauchy's Integral Theorem

\star Theorem: If $f(z)$ is analytic in a simply connected domain D, then for every simple closed path C in D

$$
\oint_{C} f(z) d z=0
$$

- Simple closed path
- Not simple closed path

- Simply connected domain

- Doubly connected domain
- Triply connected domain

* Examples
- Entire function

$$
\oint_{C} e^{z} d z=\oint_{C} \cos z d z=\oint_{C} z^{n} d z=0 \quad n=0,1,2, \cdots
$$

-

$$
\begin{gathered}
\oint_{C} \sec z d z=\oint_{C} \frac{1}{z^{2}+4} d z=0 \quad C: \text { unit circle } \\
\oint_{C} \frac{1}{z^{2}} d z=0
\end{gathered}
$$

The last equality does not come from Cauchy's theorem.
\star Theorem (Path Independence): If $f(z)$ is analytic in a simply connected domain D, then the integral of $f(z)$ is independent of path in D, i.e. every path in D from z_{1} to z_{2} gives the same value of the integral.

$$
\int_{c_{1}+\left(-c_{2}\right)} f(z) d z=\int_{c_{1}} f(z) d z+\int_{-c_{2}} f(z) d z=\int_{c_{1}} f(z) d z-\int_{c_{2}} f(z) d z .=0
$$

* Principle of Deformation of Path:

We can deform the path of an integral, keeping the ends fixed, without causing a change in the integral value, as long as the deforming path contains only point at which $\mathrm{f}(z)$ is analytic.

For example, we can show that

$$
\oint\left(z-z_{0}\right)^{m} d z= \begin{cases}2 \pi \mathrm{i} & \text { if } m=-1 \\ 0 & \text { if } m \neq-1 \text { and an integer }\end{cases}
$$

for any simple closed counterclockwise curve, containing Z_{0} in its interior. Note that $f(z)=$ $\left(z-z_{0}\right)^{m}$ is not analytic at $z=z_{0}$ when m is negative. However, the principle still holds true.

* Existence of Indefinite Integral: If $f(z)$ is analytic in a simply connected domain D, then there exists $F(z)$ such that $F^{\prime}(z)=f(z)$. And for all path from z_{1} to z_{2}.

$$
\int_{c} f(z) d z=F\left(z_{2}\right)-F\left(z_{1}\right)
$$

Sketch of proof)

* Integral Theorem for multiply connected domains:

Recall the principle of continuous deformation or note the following cutting argument.

$$
\int_{c_{1}+c_{5}-c_{2}+c_{6}}+\int_{-c_{3}-c_{5}+c_{4}-c_{6}}=\int_{c_{1}+c_{4}}-\int_{c_{2}+c_{3}}=0 .
$$

III. Cauchy's Integral Formula

\star Theorem: Let D be a simply connected domain and $f(z)$ be analytic in D. Then, for any z_{0} and for any simple closed path in D that encloses z_{0}, we have

$$
\oint_{C} \frac{f(z)}{z-z_{0}} d z=2 \pi i f\left(z_{0}\right)
$$

\star Ex) $\oint_{C} \frac{z^{3}-6}{2 z-i} d z$, where $i / 2$ is inside C.

Also, note that for the following multiply connected domain, we have

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \oint_{C_{1}} \frac{f(z)}{z-z_{0}} d z+\frac{1}{2 \pi i} \oint_{C_{2}} \frac{f(z)}{z-z_{0}} d z
$$

* Recall

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)} d z
$$

Also, we have

$$
\begin{aligned}
f^{\prime}\left(z_{0}\right) & =\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{2}} d z \\
f^{\prime \prime}\left(z_{0}\right) & =\frac{2!}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{3}} d z \\
& \vdots \\
f^{(n)}\left(z_{0}\right) & =\frac{n!}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z
\end{aligned}
$$

\star Ex 1)

$$
\oint_{C} \frac{\cos z}{(z-\pi i)^{2}} d z
$$

- Cauchy's Inequality:

$$
\left|f^{(n)}\left(z_{0}\right)\right| \leq \frac{n!M}{r^{n}}
$$

where $|f(z)| \leq M$ on the circle with radius r and center z_{0}.

- Liouville's Theorem: If an entire function is bounded, it is a constant function.

[^0]: The contents herein are based on the book "Advanced Engineering Mathematics" by E. Kreyszig and only for the course KEEE202, Korea University.

