Signals and Systems Continuous-Time Fourier Transform

Chang-Su Kim

	continuous time	discrete time
periodic (series)	CTFS	DTFS
aperiodic (transform)	CTFT	DTFT

Lowpass Filtering - Blurring or Smoothing

Highpass Filtering - Edge Extraction

a b c
FIGURE 4.24 Results of ideal highpass filtering the image in Fig. 4.11(a) with $D_{0}=15,30$, and 80 , respectively. Problems with ringing are quite evident in (a) and (b).

CTFT Formula and Its Derivation

Bridge Between Fourier Series and Transform

- Consider the periodic signal $\mathrm{x}(\mathrm{t})$

- Its Fourier coefficients are

$$
a_{k}= \begin{cases}\frac{2 T_{1}}{T}, & k=0 \\ \frac{\sin \left(k \omega_{0} T_{1}\right)}{k \pi} & k \neq 0\end{cases}
$$

Bridge Between Fourier Series and Transform

- Sketch a_{k} on the k-axis

- The sketch is obtained by sampling the sinc function.
- For each value of k, the signal $x(t)$ has a periodic component with weight a_{k}. So, the above sketch shows the frequency content of the signal $x(t)$.

Bridge Between Fourier Series and Transform

- The same sketch a_{k} on the ω-axis:

- On the ω-axis, the distance between two consecutive a_{k} 's is $\omega_{0}=2 \pi / T$, which is the fundamental frequency.

Bridge Between Fourier Series and Transform

- The same sketch Ta_{k} on the ω-axis:

- The distance between two adjacent a_{k} 's is $\omega_{0}=2 \pi / T$.
- As T \rightarrow ©,$\omega_{0} \rightarrow 0$.
- The distance between two consecutive a_{k} 's becomes zero
- The sketch of a_{k} becomes continuous
- The continuous curve X(jw) is called as Fourier Transform

Bridge Between Fourier Series and Transform

- On the other hand, as $\mathrm{T} \rightarrow$ © , the signal $\mathrm{x}(\mathrm{t})$ becomes an aperiodic signal

- Fourier Transform can represent an aperiodic signal in frequency domain

From CTFS to CTFT: Formal Derivation

- How can we use this formula for a nonperiodic (aperiodic) function $x(t)$?

$$
x(t)=\lim _{T \rightarrow \infty} \tilde{x}(t)
$$

From CTFS to CTFT: Formal Derivation

- Given the relationships

$$
\begin{aligned}
& \tilde{x}(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{0} t} \\
& a_{k}=\frac{1}{T} \int_{T} \tilde{x}(t) e^{-j k \omega_{0} t} d t
\end{aligned}
$$

$$
x(t)=\lim _{T \rightarrow \infty} \tilde{x}(t)
$$

derive the following CTFT formula

$$
\begin{aligned}
& x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) e^{j \omega t} d \omega \\
& X(j \omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t
\end{aligned}
$$

CTFT Formula - Fourier Transform Pair

- Forward Transform

$$
X(j \omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t
$$

- Inverse Transform

$$
x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) e^{j \omega t} d \omega
$$

- $X(j w)$ represents the strength of frequency component at w in $x(t)$

Time Domain vs. Frequency Domain

- Fourier analysis (series or transform) is a tool to determine the frequency contents of a given signal
- Conversion from time domain to frequency domain.

$$
X(j \omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t
$$

- It is always possible to move back from frequency domain to time domain

$$
x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) e^{j \omega t} d \omega
$$

Some Examples

Ex 1) Impulse function \rightarrow constant function

Some Examples

Ex 2) Rectangular pulse \rightarrow sinc function

$$
\begin{aligned}
& X(j \omega)=\int_{-T_{1}}^{T_{1}} e^{-j \omega t} d t=\frac{2 \sin \omega T_{1}}{\omega}=2 T_{1} \operatorname{sinc}\left(\frac{\omega T_{1}}{\pi}\right) \\
& \text { where } \operatorname{sinc}(t) \square \frac{\sin (\pi t)}{\pi t}
\end{aligned}
$$

More Examples

Unified Framework for CTFS and CTFT:
 Periodic Signals Can Also Be Represented as Fourier Transform

Fourier Transform for Periodic Signals

- Consider the inverse Fourier transform of

$$
\mathrm{X}(j \omega)=\sum_{k=-\infty}^{\infty} 2 \pi a_{k} \delta\left(\omega-k \omega_{0}\right)
$$

- So, we can deduce that

$$
x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{0} t} \stackrel{\text { Fourier }}{\longleftrightarrow} \mathrm{X}(j \omega)=\sum_{k=-\infty}^{\infty} 2 \pi a_{k} \delta\left(\omega-k \omega_{0}\right)
$$

Fourier Transform for Periodic Signals

Ex 1) sin function

$x(t)=\sin \left(\omega_{0} t\right) \stackrel{\text { F.S. }}{\longleftrightarrow} a_{1}=\frac{1}{2 j}, a_{-1}=\frac{1}{-2 j}$

Ex 2) cos function
$x(t)=\cos \left(\omega_{0} t\right) \stackrel{\text { F.S. }}{\longleftrightarrow} a_{1}=a_{-1}=\frac{1}{2}$

Fourier Transform for Periodic Signals

Ex 3) Fourier transform of impulse trains

$$
\begin{aligned}
& x(t)=\sum_{-\infty}^{\infty} \delta(t-k T) \stackrel{\text { F.S. }}{\longleftrightarrow} a_{k}=\frac{1}{T} \int_{-T / 2}^{T / 2} \delta(t) \cdot e^{-j k \omega_{0} t} d t=\frac{1}{T} \\
& \therefore X(j \omega)=\frac{2 \pi}{T} \sum_{k=-\infty}^{\infty} \delta\left(\omega-\frac{2 \pi k}{T}\right)
\end{aligned}
$$

Properties of CTFT

Properties of CTFT

1. Linearity

$$
a \cdot x(t)+b \cdot y(t) \stackrel{F}{\longleftrightarrow} a X(j \omega)+b Y(j \omega)
$$

2. Time shifting

$$
x\left(t-t_{0}\right) \stackrel{F}{\longleftrightarrow} e^{-j \omega t_{0}} X(j \omega)
$$

3. Conjugation and conjugate symmetry

$$
\begin{aligned}
& x^{*}(t) \stackrel{F}{\longleftrightarrow} X^{*}(-j \omega) \\
& X(j \omega)=X^{*}(-j \omega) \quad[x(t) \text { real }]
\end{aligned}
$$

4. Differentiation and integration

$$
\begin{aligned}
& \frac{d x(t)}{d t} \stackrel{F}{\longleftrightarrow} j \omega \cdot \mathrm{X}(j \omega) \\
& \int_{-\infty}^{t} x(\tau) d \tau \stackrel{F}{\longleftrightarrow} \frac{1}{j \omega} X(j \omega)+\pi X(0) \delta(\omega)
\end{aligned}
$$

Properties of CTFT

5. Time and frequency scaling

$$
\begin{aligned}
& x(a t) \stackrel{F}{\longleftrightarrow} \frac{1}{|a|} \mathrm{X}\left(\frac{j \omega}{a}\right) \\
& x(-t) \stackrel{F}{\longleftrightarrow} \mathrm{X}(-j \omega)
\end{aligned}
$$

6. Parseval's relation

$$
\int_{-\infty}^{\infty}|x(t)|^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|X(j \omega)|^{2} d \omega
$$

7. Duality

$$
g(t) \stackrel{\mathrm{F}}{\longleftrightarrow} G(j \omega) \Rightarrow G(j t) \stackrel{\mathrm{F}}{\longleftrightarrow} 2 \pi g(-\omega)
$$

Convolution Property of CTFT

$$
y(t)=h(t) * x(t) \stackrel{F}{\longleftrightarrow} Y(j \omega)=H(j \omega) \cdot X(j \omega)
$$

- Two approaches for proof and understanding

1. LTI interpretation
$\times \quad$ Note that the frequency response $\mathrm{H}(\mathrm{jw})$ is just the CTFT of the impulse response $h(t)$.
2. Direct equation manipulation

Convolution Property of CTFT

- Lowpass Filter

$$
Y(j \omega)= \begin{cases}0, & \omega<-\omega_{0} \\ X(j \omega), & -\omega_{0}<\omega<\omega_{0} \\ 0, & \omega_{0}<\omega\end{cases}
$$

Convolution Property of CTFT

- Highpass Filter:

$$
Y(j \omega)= \begin{cases}X(j \omega), & \omega<-\omega_{0} \\ 0, & -\omega_{0}<\omega<\omega_{0} \\ X(j \omega), & \omega_{0}<\omega\end{cases}
$$

Convolution Property of CTFT

- Bandpass Filter:

$$
Y(j \omega)= \begin{cases}X(j \omega), & -\omega_{1}<\omega<-\omega_{2} \\ X(j \omega), & \omega_{1}<\omega<\omega_{2} \\ 0, & \text { otherwise }\end{cases}
$$

Examples

CTFT Table

TABLE 4.2 BASIC FOURIER TRANSFORM PAIRS

Signal	Fourier transform	Fourier series coefficients (if periodic)
$\sum_{k=-\infty}^{+\infty} a_{k} e^{j k \omega_{0} t}$	$2 \pi \sum_{k=-\infty}^{+\infty} a_{k} \delta\left(\omega-k \omega_{0}\right)$	a_{k}
$e^{j \omega_{0} t}$	$2 \pi \delta\left(\omega-\omega_{0}\right)$	$a_{1}=1$ $a_{k}=0, \quad$ otherwise
$\cos \omega_{0} t$	$\pi\left[\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right]$	$a_{1}=a_{-1}=\frac{1}{2}$ $a_{k}=0, \quad$ otherwise
$\frac{\pi}{j}\left[\delta\left(\omega-\omega_{0}\right)-\delta\left(\omega+\omega_{0}\right)\right]$	$a_{1}=-a_{-1}=\frac{1}{2 j}$ $a_{k}=0, \quad$ otherwise	
$\sin \omega_{0} t$	$2 \pi \delta(\omega)$	$a_{0}=1, \quad a_{k}=0, k \neq 0$ (this is the Fourier series representation for any choice of $T>0$
$x(t)=1$		

CTFT Table

Periodic square wave
$x(t)=\left\{\begin{array}{ll}1, & |t|<T_{1} \\ 0 & T_{1}<|t| \leq \frac{T}{2}\end{array} \sum_{k=-\infty}^{+\infty} \frac{2 \sin k \omega_{0} T_{1}}{k} \delta\left(\omega-k \omega_{0}\right) \quad \frac{\omega_{0} T_{1}}{\pi} \operatorname{sinc}\left(\frac{k \omega_{0} T_{1}}{\pi}\right)=\frac{\sin k \omega_{0} T_{1}}{k \pi}\right.$
and
$x(t+T)=x(t)$
$\sum_{n=-\infty}^{+\infty} \delta(t-n T) \quad \frac{2 \pi}{T} \sum_{k=-\infty}^{+\infty} \delta\left(\omega-\frac{2 \pi k}{T}\right) \quad a_{k}=\frac{1}{T}$ for all k
$x(t)\left\{\begin{array}{ll}1, & |t|<T_{1} \\ 0, & |t|>T_{1}\end{array} \quad \frac{2 \sin \omega T_{1}}{\omega}\right.$
$\frac{\sin W t}{\pi t} \quad X(j \omega)=\left\{\begin{array}{ll}1, & |\omega|<W \\ 0, & |\omega|>W\end{array} \quad-\right.$

CTFT Table

$\delta(t)$	1	-
$u(t)$	$\frac{1}{j \omega}+\pi \delta(\omega)$	-
$\delta\left(t-t_{0}\right)$	$e^{-j \omega t_{0}}$	-
$\frac{1}{a+j \omega}$	-	
$e^{-a t} u(t), \operatorname{Pe}\{a\}>0$	$\frac{1}{(a+j \omega)^{2}}$	-
$\frac{1}{e^{-a t} u(t), \operatorname{Re} e\{a\}>0}$	$\frac{1}{(a+j \omega)^{n}}$	
$\frac{t^{n-1}}{(n-1)!} e^{-a t} u(t)$,		
$\operatorname{Re}\{a\}>0$		

Multiplication Property of CTFT

$$
r(t)=s(t) \cdot p(t) \stackrel{F}{\longleftrightarrow} R(j \omega)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} S(j \theta) P(j(\omega-\theta)) d \theta
$$

- This is a dual of the convolution property

Multiplication Property of CTFT

Idea of AM (amplitude modulation)

FT of $p(t)=\cos \omega_{0} t$
modulation $\quad g(t)=r(t) \cdot p(t)$

demodulation $\mathrm{g}(\mathrm{t}) \mathrm{p}(\mathrm{t}) \stackrel{\mathrm{F}}{\longleftrightarrow} \mathrm{Q}(\mathrm{j} \omega)$
Original signal is recovered after a low-pass filter

Multiplication Property of CTFT

A communication system

Causal LTI Systems Described by Differential Equations

Linear Constant-Coefficient Differential Equations

$$
\sum_{k=0}^{N} a_{k} \frac{d^{k} y(t)}{d t^{k}}=\sum_{k=0}^{M} b_{k} \frac{d^{k} x(t)}{d t^{k}}
$$

- The DE describes the relation between the input $x(t)$ and the output $y(t)$ implicitly
- In this course, we are interested in DEs that describe causal LTI systems
- Therefore, we assume the initial rest condition

$$
\text { If } x(t)=0 \text { for } t<t_{0} \text {, then } y(t)=0 \text { for } t<t_{0}
$$

which also implies

$$
y\left(t_{0}\right)=\frac{d y\left(t_{0}\right)}{d t}=\cdots=\frac{d^{N-1} y\left(t_{0}\right)}{d t^{N-1}}=0
$$

Frequency Response

- What is the frequency response $\mathrm{H}(\mathrm{jw})$ of the following system?

$$
\sum_{k=0}^{N} a_{k} \frac{d^{k} y(t)}{d t^{k}}=\sum_{k=0}^{M} b_{k} \frac{d^{k} x(t)}{d t^{k}}
$$

- It is given by

$$
H(j \omega)=\frac{\sum_{k=0}^{M} b_{k}(j \omega)^{k}}{\sum_{k=0}^{N} a_{k}(j \omega)^{k}}
$$

Example

Q) $\frac{d^{2} y(t)}{d t^{2}}+4 \frac{d y(t)}{d t}+3 y(t)=\frac{d x(t)}{d t}+2 x(t)$,

$$
x(t)=e^{-t} u(t) .
$$

A) $\quad Y(j \omega)=H(j \omega) X(j \omega)$

$$
\begin{aligned}
& =\left[\frac{j \omega+2}{(j \omega)^{2}+4(j \omega)+3}\right]\left[\frac{1}{j \omega+1}\right] \\
& =\frac{j \omega+2}{(j \omega+1)^{2}(j \omega+3)} \\
& =\frac{\frac{1}{4}}{j \omega+1}+\frac{\frac{1}{2}}{(j \omega+1)^{2}}-\frac{\frac{1}{4}}{j \omega+3} \\
\Rightarrow y(t) & =\left[\frac{1}{4} e^{-t}+\frac{1}{2} t e^{-t}-\frac{1}{4} e^{-3 t}\right] u(t)
\end{aligned}
$$

