Chapter 14. Complex Integration

Chang-Su Kim

The contents herein are based on the book “Advanced Engineering Mathematics” by E. Kreyszig and only for
the course KEEE202, Korea University.
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I. LINE INTEGRAL

/Cf(z)dz

* Line integral of f along a curve C

The curve is given by

C:  z(t) =z(t) +iy(t) a<t<b
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The line integral is given by the limit of the summation
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In other words,

n—oo

/ f(z)dz & lim S,
c
= nh—{go Z J(Zm-1)(Zm — Zm—1)-
m=1
Also, let f(z) = u(z) +iv(z). Then, we have
Su = 3 (Wem1) + iv(zm) ) (A + iBym)

- ZuAmm — ZvAym +i[ZuAym + ZvAxm]

/Cf(z)dz:/Cudx—/cvdy%—z’[/cudij/Cvd:n}.
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e Evaluating line integrals: method 1

[ see= | a0l

— T

at tm- at tm

This is because

ANz = Zm — Zm—1

> Z(tme1)(tm — tm—1)

— (t1) At
Then,
S, = zn:lf(zml)é(tml)Atm
S el )t Al
and " ,
Tim S, = [ L)t

* Ex 1) Let C be the unit circle, which has the counterclockwise orientation.

1
%dz?
Cc <
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e Evaluating line integrals: method 2

* Theorem
Suppose that f(z) is analytic in a simply connected domain D. Then, there exists an indefinite

integral of f(z) in D, i.e., there exists F(z) such that F'(z) = f(z). Also, for all paths in D

joining two points zg and 21

| sz = P - e

Note that D is called a simply connected domain, if every closed curve without self intersections

encloses only points of D.

not simply connected

* Ex 2)

/ 1dz = Lni—Ln(—17)

e ML-inequality
Let |f(2)] < M on C and L denote the length of C'. Then,

)/Cf(z)dz‘ < ML.
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II. CAucHY’S INTEGRAL THEOREM

* Theorem: If f(z) is analytic in a simply connected domain D, then for every simple closed

path C in D

fc f(z)dz=0

- Simple closed path @ é%
- Not simple closed path Q@ % N

- Simply connected domain %

- Doubly connected domain

- Triply connected domain @

* Examples

o Entire function

fezdz—fcoszdz—ja{z"dz—o n=0,1,2,---
C C C

1
jé seczdz = 7{ 5 dz =20 C' : unit circle
C C < + 4

The last equality does not come from Cauchy’s theorem.
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* Theorem (Path Independence): If f(z) is analytic in a simply connected domain D, then the

integral of f(z) is independent of path in D, i.e. every path in D from z; to z2 gives the same

value of the integral.

Ci
C:

® 7

/Cl+(02) Jle)de = /c1 fla)ds+ —cs J(2)dz = /C1 f(z)dz - /02 f(z)dz. =0

* Principle of Deformation of Path:

We can deform the path of an integral, keeping the ends fixed, without causing a change in the

integral value, as long as the deforming path contains only point at which f(z) is analytic.

For example, we can show that

2mi ifm=—1
7{(,2 —20)"dz =
0 if m# —1 and an integer

for any simple closed counterclockwise curve, containing Zj in its interior. Note that f(z) =

(z — z0)™ is not analytic at z = 29 when m is negative. However, the principle still holds true.
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* Existence of Indefinite Integral: If f(z) is analytic in a simply connected domain D, then there

exists F'(z) such that F'(z) = f(z). And for all path from 21 to z9.

/f(z)dz = F(z2) — F(21)

Sketch of proof)
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* Integral Theorem for multiply connected domains:
D

c1+cs—c2+ce —c3—C5+Cc4—Cp c1+cq ca2+c3
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III. CAucHY’S INTEGRAL FORMULA

* Theorem: Let D be a simply connected domain and f(z) be analytic in D. Then, for any z

and for any simple closed path in D that encloses zg, we have

(2) dz =2mif(zp)

Cc %~ %0

* Ex) . Z;;:?dz, where i/2 is inside C.

Also, note that for the following multiply connected domain, we have

RIS N O

dz.

f(20) = 5=

- 2mi 2~ 20 27 Jo, 2 — 20

/0

/i\ C Ci
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IV. COMPLEX ANALYTIC FUNCTIONS HAVE DERIVATIVES OF ALL ORDERS

* Recall

f(z0) = o jéo 1) g,

(z — 2p)

Also, we have

fea) = e § e

21 Jo (2 — 20)?
" 2! z
e = g

F) = ]{C _IE

e Cauchy’s Inequality:

M
P 0 < =3

where |f(z)| < M on the circle with radius r and center zg.

e Liouville’s Theorem: If an entire function is bounded, it is a constant function.
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