Chapter 15. Power Series and Taylor Series

Chang-Su Kim

The contents herein are based on the book “Advanced Engineering Mathematics” by E. Kreyszig and only for
the course KEEE202, Korea University.
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I. SEQUENCES AND SERIES

We denote a sequence of complex numbers, z1, 22, 23, . . ., by {2z }.

* Convergence

A sequence is called convergent

lim z, = c,
n—oo
if for any € > 0, there exists N such that
|lzn — || <€ for all n > N.

A sequence is said to be divergent, if it is not convergent.

Let us consider a series
o0

sz:zl—kzg-i--”

m=1

Its partial sum is defined by
n
=Y
m=1

The series is called convergent if {s,} converges.

* Theorem: If a series z1 + zo0 + - - - converges, then

lim z, = 0.
n—oo

This theorem implies that if
lim z, # 0,
n—oo

the series diverges. However, it does not imply that if

lim z, =0,
n—oo

the series converges.
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* Cauchy’s convergence test:

A series z1 + z9 + - - - is convergent, if and only if for any € > 0 we can find N such that

lzn41 + -+ ZnerH <€

for all n > N and p.

A series z1 + z3 + - - - is called absolutely convergent, if

[eS)
> llzml
m=1

is convergent.

* Theorem: If a series is absolutely convergent, it is convergent.
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Note that Cauchy’s convergence test is not helpful in practice, though it is very useful in
proving many theorems and properties. Let us see how to test whether a given sequence is

convergent or not in practice.

* Practical Method 1 (Comparison Test): If ||z;|| < b; and > b; converges, then ) z; converges.

* Practical Method 2 (Ratio Test): >z, converges, if

|2 <g<1  forn> N,

n

where N is any fixed number.

Variation of Ratio Test: Let L = limy, . || 25 ]].
o If L < 1, the series converges.

o If L > 1, it diverges.

o If L =1, the test fails.

* Practical Method 3 (Root Test): >z, converges, if

Vil <g<1 for n > N,

where N is any fixed number.

Variation of Root Test: Let L = lim, o0 /| 2n]|-

o If L < 1, the series converges.
o If L > 1, it diverges.
o If L =1, the test fails.

September 22, 2006 LECTURE NOTES



II. POWER SERIES

Let us consider a series, given by

2= )
2 S

Coefficient Center

It contains a variable z, so it is a function f(z). Its convergence also depends on z.

* Ex 1: ) > 2" converges when ||z]| <1

Z’IL

*x Ex 2: Y7 2 converges everywhere.

*Ex 3: Y22 (nl" converges only when z = 0..
n=0 g

* Convergence of a Power Series:

Converges

o It converges at the center zg
o If it converges at a point z1, it converges for every z closer to zg than z1, i.e., ||z—z0|| < ||z1—20]|-

o If it diverges at zg, it diverges for every z farther away from z9, i.e., ||z — 20| > ||z2 — 20]|-

= These properties imply that the region of convergence has always a circular shape.

Proof) Skipped.
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* Radius of Convergence R:

The radius of convergence R is defined such that
o the series converges within ||z — zo|| < R,

o it diverges when ||z — zo|| > R,

« it may converge or diverge on the circle.

It is a convention to set R = oo if the series converges everywhere. Also, R = 0, if the series

converges only when z = zj.

* Theorem (How to find R?):

Suppose that

* BEx :

00
n"
Z n

n=0

(z +20)"
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III. PROPERTY OF POWER SERIES

We consider the properties of a power series

f(z) = Z anz".
n=0

These properties can be straightforwardly extended to the general case of
oo
9(z) = 3 bule = 20)"
n=0

1. (Continuity at the center) If the power series has the radius of convergence R > 0, it is

continuous at z = 0.

lim £(2) = £(0) = a.

z—0
2. (Unique representation) If f(2) = ag + a1z 4+ agz? +--- = bg + b1z + bz +--- , then ag = by,
a1 =by, a3 =0y, ---.
3. (Addition) If f(2) = ap + a1z + azz? + - -+ with Ry and g(2) = bg + b1z + baz? + - - with Ry,
then f(2) + g(2) = (ap + bo) + (a1 +b1)z + (a2 + b2)2% + -+ with R > min(Ry, Ry).
4. (Multiplication)

f(z) -g(z) = agbg + (agbl + CL1b0)Z + (aobg + a1by + a2b0)22 + -
= (aobn + arbp 1+ -+ anbo)z”  with R > min(Ry, Ry).
n=0

5. (Differentiation) f/(z) = a1 + 2a2z + 3azz? +4aq2® + - =32  na,z""!  with R = Ry.
6. (Integration) [ f(z)dz = agz + alé + a2§ o= et with R = Ry.
7. A power series with a nonzero radius of convergence R represents an analytic function on the

domain {z : ||z]| < R}.

* Ex 1 : Find the radius of convergence of »_ n(n—1) (z —20)"

—ga

* Ex 2: If f(2) => .77 an2z" is odd, show that a,, = 0 for all even n.
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IV. TAYLOR SERIES

* Theorem: Every analytic function can be represented by a power series

(),
fey =3 Ty
n=1

n

Sketch of proof)

Note that for z* on C, we have

1 1
¥ —z 2z —z0 — (2 — 20)
1 1

* ’ _ R—=Z0
z zo 1 > —20

1 z—z Z— 20 \2
= — <1+ . °+<* 0) +)
Z5 — 20 ZT— 20 ZT— 20

fe) = 2§ T

2t Jo 2* — 2z

_ b 1) dz*—l—(z',zo)?{ ! dz*+(220)2j{(2 = dz" + - -
C C

270 Jo 2% — 20 2mi (z* — 20)? 2mi *—29)3
R N G &)
B 7;) 2mi %c (2* — zp)"H! dz
— 1 ! *
= > e (o . D = 1))
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*

A few Taylor series.

*
=
>
Q0
=

S
D
2

e arctan z

o Represent — in terms of (z — 29)", where ¢ # z.

o Si(2) = fOZ sinz g,

z
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