Chapter 16. Laurent Series

Chang-Su Kim

The contents herein are based on the book “Advanced Engineering Mathematics” by E. Kreyszig and only for
the course KEEE202, Korea University.
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I. LAURENT’S THEOREM

Laurent series generalize Taylor series.

* Laurent Theorem: Let f(z) be analytic in a domain, which contains C; and C5 and the annulus

between them. Then, we have

Ci
C
f) = Y an(z—=0)",
an, = ! 1) dz*. (1)

2mi Jo (2% — 20)" 1

e The series converges and represents f(z) in the enlarged open annulus, obtained by continuously
increasing C1 and decreasing Cy, until they reach a point where f(z) is singular.
o If z is the only singular point inside Cy, Co can be shrunk to the point zg. In other words, f(2)

converges in a disk except zy. Also, in such a case, the negative powers are called the principal

part.

*Ex1: 2 %sinz

LECTURE NOTES

October 9, 2006



w =

* Ex 2: 2%

+x Ex 4 : Find all Laurent series of

-2 3
f(z) = ﬁ with center 0
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II. SINGULARITIES AND ZEROS

e f(z) is said to be singular at z = zg, if f(z) is not analytic at z = 2y but every neighborhood
of z = 2y contains points at which f(z) is analytic. Also, a singular point zj is called isolated, if

zp has a neighborhood without further singularities.

* Ex: tan% is singular at z = 0. But, it is not an isolated singularity.

* Classification of isolated singularities at z = 2

f(z):Zan(z—zo)”—FZ(zbinzo)n (0 < |z — 20| < R).
n=0 n=1

principal part

If the principal part contains finitely many terms, z = zq is called a pole and we have

Principal part = -2 4+ %2 + o bm

Z—20 (z—20)? U (z—z20)™

m = order of the pole at z = zg

Especially, a pole of the first order is called a simple pole. If the principal part contains infinitely

many terms, z = zg is called an isolated essential singularity.

* BEx 1:

z =0 : a simple pole.

z =2 : a pole of order 5.

*~ Ex 2:

1 11

z =0 : an isolated essential singularity.
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e A zero of an analytic function f(z) in D is a point z = 2y such that f(zp) = 0. A zero has
order n, if f, f', f”,..., f® 1) are zero at z = zg but f((z) # 0. A first-order zero is called a

simple zero.

* Ex )

. f(Z):1+Z2

e Taylor series at a zero of order n is given by

f(2) = an(z—20)" + ani1(z — 20)" ™ + ... (an #0)
= (2720)"[an+an+1(2720)+an+2(2720)2+...]
1

e Relationship between poles and zeros: If f(z) has a zero of order n at z = z, 7 has a pole

of order n at z = 2.
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III. RESIDUE INTEGRATION METHOD

* Let f(z) be analytic on C' and inside C, except at a singular point z = 2.

Then, we have
/ f(2)dz = 2miby
C

where b is called the residue of f(z) at z = zp and denoted by

b1 = Res,=, f(2).

Proof)

*x Ex 1: f(z) = 27 *sinz, C: counterclockwise unit circle.

* Ex 2: f(z) = ﬁ, C: z = 1, clockwise.
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IV. FORMULAS FOR RESIDUES

* Simple poles:

Res,—., f(z) = by = lim (z — 20) f(2).

Z—00

Also, if f(z) = % and p(zg) # 0, then ¢(z) has a simple zero at zp, and

ReSZ:ZOf(Z) = R’eSZ:ZOZqD(— —

* Poles of order m:

dmfl

.
(m—1)! sz dzm—1

Res,—, f(2) = (2 —20)"f(2)

*x Ex: f(Z) = %
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V. MULTIPLE SINGULARITIES INSIDE CONTOUR
C

/ f(2)dz = 2mi [Reszzzl £(2) + Resas, f(2) + Res,—s, f(z)]
C
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VI. RESIDUE INTEGRATION OF REAL INTEGRALS
A. Type 1 - Integrals Including Sinusoidal Functions

To evaluate
27

J = F(cosf,sinf)db,
0

we set z = . Then, we have

1=r(5(+3) g(-2)ae

* Ex) fozﬂ 1

V2—cos 6 df

B. Type 2 - Real Integral over The Whole Line

Suppose that f(x) is a real rational function, whose denominator # 0 for all z and has a degree

at least two units higher than the degree of denominator. Then, we have

/OO f(z) dz =2mi Z Resf(z).

> u.h.p.

v
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C. Type 8 - Fourier Integrals

Suppose that f(z) is a real rational function, whose denominator # 0 for all  and has a degree

at least two units higher than the degree of denominator. Then, for s > 0, we have

/oo f(x)cossxdr = —27 Z Tm Res [f(z)eisz},
- uw.h.p.

/oo f(z)sinsxder = 27 Z ReRes [f(z)eisz}.
- w.h.p.

Alternatively,

/OO f(2)e® do = 2mi Z Res [f(z)eisz] .
- u.h.p.

* Ex: evaluate [0 85T 4y and ffooo ,:‘érjr“fg dx, where s > 0 and k > 0.

—oo k2+x?

D. Type 4 - Cauchy Principal Value

Suppose that A < a < B and lim,_,, | f(x)| = co. Then, the Cuchy principal value is defined
by

prv. /A ? ey = lim [ /A " f@)dn + / f f(x)dm] .

The following theorem is useful in computing the Cauchy principal value.

* If f(z) has a simple pole at z = a on the real axis,

r—0

lim / f(2)dz = miRes,—o f(2).
Cy

C.
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* Ex: Evaluate

& 1
V. d
PEy /_OO (22 =3z +2)(22 + 1) v
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