Chapter 16. Laurent Series

Chang-Su Kim

The contents herein are based on the book "Advanced Engineering Mathematics" by E. Kreyszig and only for the course KEEE202, Korea University.

I. Laurent's Theorem

Laurent series generalize Taylor series.

* Laurent Theorem: Let f(z) be analytic in a domain, which contains C_1 and C_2 and the annulus between them. Then, we have

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z - z_0)^n,$$

$$a_n = \frac{1}{2\pi i} \oint_C \frac{f(z^*)}{(z^* - z_0)^{n+1}} dz^*.$$
(1)

- The series converges and represents f(z) in the enlarged open annulus, obtained by continuously increasing C_1 and decreasing C_2 , until they reach a point where f(z) is singular.
- If z_0 is the only singular point inside C_2 , C_2 can be shrunk to the point z_0 . In other words, f(z) converges in a disk except z_0 . Also, in such a case, the negative powers are called the principal part.

 $\star \text{ Ex } 1: z^{-5} \sin z$

$\star \operatorname{Ex} 2: z^2 e^{\frac{1}{z}}$		

$\star \text{ Ex } 3: \frac{1}{1-z}$		

 \star Ex 4 : Find all Laurent series of

$$f(z) = \frac{-2z+3}{z^2 - 3z + 2} \qquad \text{with center } 0$$

II. SINGULARITIES AND ZEROS

• f(z) is said to be singular at $z = z_0$, if f(z) is not analytic at $z = z_0$ but every neighborhood of $z = z_0$ contains points at which f(z) is analytic. Also, a singular point z_0 is called isolated, if z_0 has a neighborhood without further singularities.

 \star Ex: $\tan \frac{1}{z}$ is singular at z=0. But, it is not an isolated singularity.

 \star Classification of isolated singularities at $z=z_0$

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \underbrace{\sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n}}_{\text{principal part}} \qquad (0 < |z - z_0| < R).$$

If the principal part contains finitely many terms, $z = z_0$ is called a pole and we have

Principal part
$$=$$
 $\frac{b_1}{z-z_0} + \frac{b_2}{(z-z_0)^2} + \ldots + \frac{b_m}{(z-z_0)^m}$
 $m = \text{order of the pole at } z = z_0$

Especially, a pole of the first order is called a simple pole. If the principal part contains infinitely many terms, $z = z_0$ is called an isolated essential singularity.

★ Ex 1:

$$f(z) = \frac{1}{z(z-2)^5} + \frac{3}{(z-2)^2}$$

z = 0: a simple pole.

z=2: a pole of order 5.

★ Ex 2:

$$f(z) = \sin \frac{1}{z} = \frac{1}{z} - \frac{1}{3!} \frac{1}{z^3} + \frac{1}{5!} \frac{1}{z^5} + \dots$$

z=0: an isolated essential singularity.

• A zero of an analytic function f(z) in D is a point $z=z_0$ such that $f(z_0)=0$. A zero has order n, if $f, f', f'', \dots, f^{(n-1)}$ are zero at $z=z_0$ but $f^{(n)}(z_0) \neq 0$. A first-order zero is called a simple zero.

$$\star$$
 Ex)

•
$$f(z) = 1 + z^2$$

•
$$f(z) = (1 - z^4)^2$$

$$f(z) = (1 - \cos z)^2$$

 \bullet Taylor series at a zero of order n is given by

$$f(z) = a_n(z - z_0)^n + a_{n+1}(z - z_0)^{n+1} + \dots$$

$$= (z - z_0)^n [a_n + a_{n+1}(z - z_0) + a_{n+2}(z - z_0)^2 + \dots]$$
(a_n \neq 0)

• Relationship between poles and zeros: If f(z) has a zero of order n at $z=z_0$, $\frac{1}{f(z)}$ has a pole of order n at $z=z_0$.

III. RESIDUE INTEGRATION METHOD

* Let f(z) be analytic on C and inside C, except at a singular point $z=z_0$.

Then, we have

$$\int_C f(z)dz = 2\pi i b_1$$

where b_1 is called the residue of f(z) at $z=z_0$ and denoted by

$$b_1 = \operatorname{Res}_{z=z_0} f(z).$$

Proof)

* Ex 1: $f(z) = z^{-4} \sin z$, C: counterclockwise unit circle.

* Ex 2: $f(z) = \frac{1}{z^3 - z^4}$, C: $z = \frac{1}{2}$, clockwise.

IV. FORMULAS FOR RESIDUES

* Simple poles:

$$\operatorname{Res}_{z=z_0} f(z) = b_1 = \lim_{z \to \infty} (z - z_0) f(z).$$

Also, if $f(z) = \frac{p(z)}{q(z)}$ and $p(z_0) \neq 0$, then q(z) has a simple zero at z_0 , and

$$\operatorname{Res}_{z=z_0} f(z) = \operatorname{Res}_{z=z_0} \frac{p(z)}{q(z)} = \frac{p(z_0)}{q'(z_0)}$$

 $\star \text{ Ex: } f(z) = \frac{az+i}{z^3+z}$

 \star Poles of order m:

$$\operatorname{Res}_{z \to z_0} f(z) = \frac{1}{(m-1)!} \lim_{z \to z_0} \frac{d^{m-1}}{dz^{m-1}} \Big[(z - z_0)^m f(z) \Big]$$

 $\star \text{ Ex: } f(z) = \frac{50z}{(z-1)^2(z+4)}$

V. Multiple Singularities Inside Contour

$$\int_{C} f(z)dz = 2\pi i \left[\operatorname{Res}_{z=z_{1}} f(z) + \operatorname{Res}_{z=z_{2}} f(z) + \operatorname{Res}_{z=z_{3}} f(z) \right]$$

VI. RESIDUE INTEGRATION OF REAL INTEGRALS

A. Type 1 - Integrals Including Sinusoidal Functions

To evaluate

$$J = \int_0^{2\pi} F(\cos\theta, \sin\theta) d\theta,$$

we set $z = e^{i\theta}$. Then, we have

$$J = F\left(\frac{1}{2}\left(z + \frac{1}{z}\right), \frac{1}{2i}\left(z - \frac{1}{z}\right)\right)\frac{1}{iz}dz$$

$$\star$$
 Ex) $\int_0^{2\pi} \frac{1}{\sqrt{2} - \cos \theta} d\theta$

B. Type 2 - Real Integral over The Whole Line

Suppose that f(x) is a real rational function, whose denominator $\neq 0$ for all x and has a degree at least two units higher than the degree of denominator. Then, we have

$$\int_{-\infty}^{\infty} f(x) dx = 2\pi i \sum_{\text{u.h.p.}} \text{Res} f(z).$$

$$\star \text{ Ex}$$
) $\int_0^\infty \frac{1}{1+x^4} dx$

C. Type 3 - Fourier Integrals

Suppose that f(x) is a real rational function, whose denominator $\neq 0$ for all x and has a degree at least two units higher than the degree of denominator. Then, for s > 0, we have

$$\int_{-\infty}^{\infty} f(x) \cos sx \, dx = -2\pi \sum_{\text{u.h.p.}} \text{Im Res} \left[f(z) e^{isz} \right],$$

$$\int_{-\infty}^{\infty} f(x) \sin sx \, dx = 2\pi \sum_{\text{u.h.p.}} \text{Re Res} \left[f(z) e^{isz} \right].$$

Alternatively,

$$\int_{-\infty}^{\infty} f(x)e^{isx} dx = 2\pi i \sum_{\text{u.h.p.}} \text{Res} \left[f(z)e^{isz} \right].$$

 \star Ex: evaluate $\int_{-\infty}^{\infty} \frac{\cos sx}{k^2 + x^2} dx$ and $\int_{-\infty}^{\infty} \frac{\sin sx}{k^2 + x^2} dx$, where s > 0 and k > 0.

D. Type 4 - Cauchy Principal Value

Suppose that A < a < B and $\lim_{x\to a} |f(x)| = \infty$. Then, the Cuchy principal value is defined by

$$\text{pr.v.} \int_A^B f(x) dx = \lim_{\epsilon \to 0} \left[\int_A^{a-\epsilon} f(x) dx + \int_{a+\epsilon}^B f(x) dx \right].$$

The following theorem is useful in computing the Cauchy principal value.

 \star If f(z) has a simple pole at z = a on the real axis,

$$\lim_{r \to 0} \int_{C_2} f(z) dz = \pi i \operatorname{Res}_{z=a} f(z).$$

 \star Ex: Evaluate $\operatorname{pr.v.} \int_{-\infty}^{\infty} \frac{1}{(x^2-3x+2)(x^2+1)} dx$