## Data Compression

## Arithmetic Coding

## Chang-Su Kim

## Arithmetic Coding

- Huffman coding is not always the best option
- It is optimum only among the coding schemes, which assign a fixed, integer number of bits to each symbol.
- For two symbol alphabet, it always assigns 0 to one symbol and 1 to the other symbol
* Average length $=1$ bit/symbol
$\times \mathrm{p}_{0}=0.9999, \mathrm{p}_{1}=0.0001 \rightarrow$ entropy $=0.00147 \mathrm{bit} /$ symbol
- Arithmetic coding is better than Huffman coding
- Coding efficiency
- Adaptivity
- Recent video coding standards incorporates arithmetic coding


## Example 1

- $\quad$ Alphabet $=\{A, B, C\}$
- $\quad p(A)=0.6, p(B)=0.3, p(C)=0.1$
- The messages starting with $A, B$ and $C$ are respectively mapped to the half-open intervals $[0,0.6),[0.6,0.9)$, and $[0.9,1)$, according to their probabilities



## Example 1

- $\quad$ Alphabet $=\{A, B, C\}$
- $\quad p(A)=0.6, p(B)=0.3, p(C)=0.1$
- Let us encode a message BCA. Since it starts with $B$ it is first mapped to the interval $[0.6,0.9)$.



## Example 1

- $\quad$ Alphabet $=\{A, B, C\}$
- $\quad p(A)=0.6, p(B)=0.3, p(C)=0.1$
- The interval is then divided into three subintervals $[0.6,0.78)$, [0.78, 0.87), $[0.87,0.9)$, corresponding to the messages starting with BA, BB, BC, respectively. Note that the length ratio of the subintervals is set to
- $0.18: 0.09: 0.03=6: 3: 1=p(A): p(B): p(C)$



## Example 1

- $\quad$ Alphabet $=\{A, B, C\}$
- $\quad p(A)=0.6, p(B)=0.3, p(C)=0.1$
- Similarly, $[0.87,0.9)$ is further divided into three subintervals, and the messages starting with BCA are mapped to [0.87, 0.888).



## Example 1

- $\quad$ Alphabet $=\{A, B, C\}$
- $\quad p(A)=0.6, p(B)=0.3, p(C)=0.1$
- The two end points can be written in binary numbers as

$$
\begin{array}{r}
0.87=\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{4}}+\frac{1}{2^{5}}+\cdots=0.11011 \cdots \\
0.888=\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\frac{1}{2^{7}}+\cdots=0.11100 \cdots
\end{array}
$$



## Example 1

- $\quad$ Alphabet $=\{A, B, C\}$
- $\quad p(A)=0.6, p(B)=0.3, p(C)=0.1$
- The encoder can transmit an arbitrary number within this interval to specify that the message starts with BCA. For example, it can transmit the sequence of three bits, 111, which corresponds to 0.875 in decimal.



## Example 1

- $\quad$ Alphabet $=\{A, B, C\}$
- $\quad p(A)=0.6, p(B)=0.3, p(C)=0.1$
- Given 111, the decoder can follow the same division procedure, and know that 0.875 lies within the interval [0.87, $0.888)$, hence the message starts with BCA.



## Example 1

- $\quad$ Alphabet $=\{A, B, C\}$
- $\quad p(A)=0.6, p(B)=0.3, p(C)=0.1$
- However, 0.875 can represent B, BA, or BAC. One way to resolve this issue is to use one more symbol EOS (end of sequence).



## Example 2

## Example 4.3.1:

Consider a three-letter alphabet $\mathcal{A}=\left\{a_{1}, a_{2}, a_{3}\right\}$ with $P\left(a_{1}\right)=0.7, P\left(a_{2}\right)=0.1$, and $P\left(a_{3}\right)=$ 0.2 . Using the mapping of Equation (4.1), $F_{X}(1)=0.7, F_{X}(2)=0.8$, and $F_{X}(3)=1$. This partitions the unit interval as shown in Figure 4.1.


FIGURE 4. 1 Restricting the interval containing the tag for the input sequence $\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$.

## Generating A Tag

- We assume that the alphabet $=\{1,2,3, \ldots, m\}$
- Cumulative distribution function

$$
F(i)=\sum_{k=1}^{i} P(k)
$$

- The symbol $i$ represented by $[F(i-1), F(i))$.
- A tag denotes a number in the interval, so it uniquely represents the symbol. We will use the midpoint

$$
T(i)=F(i-1)+\frac{1}{2} P(i)
$$

## Generating A Tag

- We are encoding a sequence of symbols $\mathbf{x}^{(n)}=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$
- As we encode more symbols, the interval gets smaller.

1) $\left[l^{(n)}, u^{(n)}\right):$ the interval for $\mathbf{x}^{(n)}$
2) Initial interval and tag
$l^{(1)}=F\left(x_{1}-1\right)$
$u^{(1)}=F\left(x_{1}\right)$
$T^{(1)}=\frac{l^{(1)}+u^{(1)}}{2}$
Interval length $=u^{(1)}-l^{(1)}=P\left(x_{1}\right)$
3) Iteration
$l^{(n)}=l^{(n-1)}+\left(u^{(n-1)}-l^{(n-1)}\right) F\left(x_{n}-1\right)$

$u^{(n)}=l^{(n-1)}+\left(u^{(n-1)}-l^{(n-1)}\right) F\left(x_{n}\right)$
$T^{(n)}=\frac{l^{(n)}+u^{(n)}}{2}$
Interval length $=u^{(n)}-l^{(n)}=\left(u^{(n-1)}-l^{(n-1)}\right) P\left(x_{n}\right)=P\left(\mathbf{x}^{(n)}\right)$

## Generating A Binary Code

1) The tag $T^{(n)}$ is inside the interval $\left[l^{(n)}, u^{(n)}\right)$, so it uniquely represents the sequence $\mathbf{x}^{(n)}$.
2) Given the tag, we can decode the sequence $\mathbf{x}^{(n)}$.
3) However, we need to express the tag with a finte number of bits.
4) How can we do achieve this?

By truncating $T^{(n)}$ to $\tilde{T}^{(n)}$ with $\left\lceil\log \frac{1}{P\left(\mathbf{x}^{(n)}\right)}\right\rceil+1$ bits, we can assure that $\tilde{T}^{(n)}$ is still in the interval.

## Incremental Coding: Brief Explanation

- Encoding
- If the interval is entirely within $[0,0.5)$, put 0
- If the interval is entirely within $[0.5,1)$, put 1
- And so forth.
- Decoding
- Given the series of bits (b0, b1, b2, ...) , if the first $k$ bits unambiguously represent a number in $\left[l^{(1)}, u^{(1)}\right)$, output the first symbol.
- And so forth
- Because we are dealing with the numbers with "int" type, which uses only four bytes, the implementation is much more complex.


## Application: Binary Image Coding

- Each pixel is binary, which represents 1 (black) or 0 (white)

Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images


## Arithmetic Coding Revis

ALISTAIR MOFFAT
The University of Melbourne
RADFORD M. NEAL
University of Toronto

## Adaptation Using Single Contexts

BinImage Image; // binary image similar to Charlmage class Image.Load("original.bim");

COutStream Out;
Out.open("original.cmp");
/* Header for image size */
Out.putvlc(Image.WX, 16);
Out.putvlc(Image.WY, 16);
Adaptivity

| input |  | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{P}(0)$ | $1 / 2$ | $2 / 3$ | $3 / 4$ | $3 / 5$ | $3 / 6$ | $4 / 7$ | $5 / 8$ | $6 / 9$ | $6 / 10$ |
| $\mathrm{P}(1)$ | $1 / 2$ | $1 / 3$ | $1 / 4$ | $2 / 5$ | $3 / 6$ | $3 / 7$ | $3 / 8$ | $3 / 9$ | $4 / 10$ |

## // Arithmetic Encoding start

 start_arithmetic_encode(); // initializationcontext *pContext = create_context_easy(2);
for(dy=0; dy<lmage.WY; dy++)
for( $\mathrm{dx}=0$; $\mathrm{dx}<$ Image.WX; $\mathrm{dx}++)\{/ /$ raster scan order int current_symbol = Image.GetPixel(dx, dy); encode(pContext, current_symbol, Out);
\}
delete_context(pContext); // free memory for context
finish_arithmetic_encode(Out); // arithmetic coding termination
Out.close();

## Adaptation Using Multiple Contexts

```
start_arithmetic_encode();
context *pContext[8];
for(p=0; p<8; p++)
    pContext[p] = create_context_easy(2);
for(dy=0; dy<lmage.WY; dy++)
    for(dx=0; dx<lmage.WX; dx++){
        int current_symbol = Image.GetPixel(dx, dy);
```


## Context-based coding


current pattern =


```
    int current_pattern = Image.GetPixel(dx-1, dy); // left pixel
        current_pattern = (current_pattern << 1) + Image.GetPixel(dx, dy-1); // upper pixel
        current_pattern = (current_pattern << 1) + Image.GetPixel(dx-1, dy-1); // upper left pixel
    encode(pContext[current_pattern], current_symbol, Out);
    }
for(p=0; p<8; p++)
    delete_context(pContext[p]);
finish_arithmetic_encode(Out);
Out.close();
```


## Results

File size (bytes) [compression ratio]

|  | Original | Single <br> Context | Multiple <br> Contexts |
| :--- | :--- | :--- | :--- |
|  | 100,004 | $47,211[2.12]$ | $21,621[4.62]$ |
|  | 100,004 | $30,476[3.28]$ | $3,276[30.53]$ |

## Arithmetic Coder

- Core files
- arith.cpp
- context.cpp
- bitio.cpp
- Note: If you use these files for research, please give a reference to the paper
A. Moffat, R. M. Neal, and I. H. Witten, "Arithmetic Coding Revisited," ACM Trans. Information Systems, vol. 16, no. 3, pp.256-294, July 1998
- Usage
- The last commented part of "example1.cpp"
- Additional files for binary image coding
- Charlmage.cpp
- Binlmage.cpp

