Arithmetic Coding

Chang-Su Kim

Arithmetic Coding

= Huffman coding is not always the best option

» Itis optimum only among the coding schemes, which
assign a fixed, integer number of bits to each symbol.

» For two symbol alphabet, it always assigns O to one
symbol and 1 to the other symbol

x Average length = 1 bit/symbol
¥ P =0.9999, p, = 0.0001 — entropy = 0.00147 bit/symbol

= Arithmetic coding is better than Huffman coding
» Coding efficiency
» Adaptivity
» Recent video coding standards incorporates arithmetic
coding

Example 1

" Alphabet = {A, B, C}
" p(A)=0.6,p(B)=0.3,p(C)=0.1

" The messages starting with A, B and C are respectively
mapped to the half-open intervals [0, 0.6), [0.6, 0.9), and
[0.9, 1), according to their probabilities

1— 0.9— 0.9—
09— C—— o.87—]BC 0.897— BCC
B BB BCB

0.6 — 0.78— 0.888—
A BA BCA

0— 0.6— 0.87—

Example 1

. Alphabet = {A, B, C}
- pP(A) = 0.6, p(B) =0.3, p(C) =0.1

- Let us encode a message BCA. Since it starts with B it is first
mapped to the interval [0.6, 0.9).

09— ¢ 0.87— B& 0.897—] BCC
B BB BCB
0.6 — 0.78— 0.888—
A BA BCA

0— 0.6— 0.87—

Example 1

. Alphabet = {A, B, C}
- pP(A) = 0.6, p(B) =0.3, p(C) =0.1

" The interval is then divided into three subintervals [0.6, 0.78),
[0.78, 0.87), [0.87, 0.9), corresponding to the messages
starting with BA, BB, BC, respectively. Note that the length
ratio of the subintervals is set to
» 0.18:0.09:0.03 =6:3:1 = p(A):pB):pC)

1/ 0.9— 0.9—
09— C—— o87—]8C 0.897— BCC
B BB BCB

0.6 — 0.78— 0.888—
A BA BCA

0— 0.6— 0.87—

Example 1

Alphabet = {A, B, C}
pP(A) =0.6, p(B) =0.3, p(C) =0.1

Similarly, [0.87, 0.9) is further divided into three subintervals,

and the messages starting with BCA are mapped to

[0.87, 0.888).

0.9—

0.6 —

0.9—
0.87—

0.78 —

0.6—

BC

BB

BA

0.9—
0.897—

0.888—

0.87—

BCC

BCB

BCA

Example 1

. Alphabet = {A, B, C}
- pP(A) = 0.6, p(B) =0.3, p(C) =0.1

" The two end points can be written in binary numbers as
1 1 1 1

087=-+5+—+—+--=011011.--,
2 2° 20 2

0.888:1+i2+i3+i7+---:0.11100---.
2 20 20 2

19— 09— = 09—
09— € 0.87— BC 0.897— BCC
B BB BCB
0.6 — 0.78— 0.888—

A BA BCA

0— 0.6— 0.87—

Example 1

Alphabet = {A, B, C}
pP(A) =0.6, p(B) =0.3, p(C) =0.1

The encoder can transmit an arbitrary number within this

interval to specify that the message starts with BCA. For
example, it can transmit the sequence of three bits, 111,

which corresponds to 0.875 in decimal.

0.9—

0.6 —

c___——

B

0.9—
0.87—

0.78 —

0.6—

BC

BB

BA

0.9—
0.897—

0.888—

0.87—

BCC

BCB

BCA

Example 1

Alphabet = {A, B, C}
pP(A) =0.6, p(B) =0.3, p(C) =0.1

Given 111, the decoder can follow the same division

procedure, and know that 0.875 lies within the interval [0.87,
0.888), hence the message starts with BCA.

0.9—

0.6 —

0.9—
0.87—

0.78 —

0.6—

BC

BB

BA

0.9—
0.897—

0.888—

0.87—

BCC

BCB

BCA

Example 1

Alphabet = {A, B, C}
pP(A) =0.6, p(B) =0.3, p(C) =0.1

However, 0.875 can represent B, BA, or BAC. One way to

resolve this issue is to use one more symbol EOS (end of

sequence).

0.9—

0.6 —

0.9—
0.87—

0.78 —

0.6—

BC

BB

BA

0.9—
0.897—

0.888—

0.87—

BCC

BCB

BCA

Example 2

Example 4.3.1:

Consider a three-letter alphabet 4 = {a,, @.. a;} with Pla,)=0.7, P(a,)=0.1, and P(a,) =
0.2. Using the mapping of Equation (4.1), F,(1) = 0.7, F'x(2) =0.8, and F(3) = I. This
partitions the unit interval as shown in Figure 4.1.

0.0 . | XV) (2.490 »).5460
/I o a N
0.7 -4 0.49 0539 / 0,5558 —
d .]u’ (() e ol
0.8 - 0.56 1~ (1.546 0.5572
ay iy ~ s iy
1.0 “al 0.70 Tal0.560 ——» 10.5600
FIGURE 4.1 Restricting the interval containing the tag for the input sequence

{e,, 0, a,,...}.

Generating A Tag

= We assume that the alphabet ={7,2,3,...,m}
o Cumulative distribution function

F (i) =3 P(K)

= The symbol i represented by [F(i-1), F(i)).

= Atag denotes a number in the interval, so it
uniguely represents the symbol. We will use the
midpoint

T@)=F(—1)+% P(i)

Generating A Tag

1)

2) Initial interval and tag

3)

We are encoding a sequence of symbols x™ = (x,, X,,.---, X)

As we encode more symbols, the interval gets smaller.

[1,u™) : the interval for x"

19 =F(x-1)

u® =F(x)

1O y®
2 ;

Interval length =u® —1® =P(x) | 07~ 0.49

TO =

Iteration '
1 =] 4 (D DY E(x ~1) | 10 | o070
u(n) — |(n—1) +(u(n—1) _|(n—1))|:(x)
n
| 4y
2
Interval length = u™ —1™ = U —10D)P(x) = P(x™)

TM =

) ()0
- N

(1.490

41

() i.lf:\ -

().560)

-

0.5600)

Generating A Binary Code

1) Thetag T™ is inside the interval [I™,u™), so it uniquely represents the sequence x™.
2) Given the tag, we can decode the sequence x™.

3) However, we need to express the tag with a finte number of bits.
4) How can we do achieve this?

By truncating T™ to T with {Iog o (n))l +1 bits, we can assure that
X

T®™ js still in the interval.

Incremental Coding: Brief Explanation

" Encoding
» If the interval is entirely within [0, 0.5), put O
» If the interval is entirely within [0.5, 1), put 1
» And so forth.

" Decoding

» Given the series of bits (b0, b1, b2, ...), if the first k bits
unambiguously represent a number in [I®,u®), output the first
symbol.

» And so forth

- Because we are dealing with the numbers with “int” type,
which uses only four bytes, the implementation is much more
complex.

Application: Binary Image Coding

" Each pixel is binary, which represents 1 (black) or O (white)

Stochastic Relaxation, Gibbs Distributions, and
the Bayesian Restoration of Images

STUART GEMAN ann DONALD GEMAN

Abstract—We make an analogy between images and statistical me-
chanics systems. Pixel gray levels and the presence and orientation of
edges are viewed as states of atoms or molecules in a lattice-like phys-
ical system. The assignment of an energy function in the physical sys-
tem determines its Gibbs distribution. Because of the Gibbs distribu-
tion, Markov random field (MRF) equivalence, this assignment also
determines an MRF image model. The energy function is a more conve-
nient and natural ism for lying picture than are
the local characteristics of the MRF. For a range of degradation mecha-
nisms, including blurring, nonlinear deformations, and multiplicative or
additive noisc, the posterior distribution is an MRF with a structurc
akin to the image model. By the analogy, the posterior distribution de-
fines another (imaginary) physical system. Gradual temperature reduc-
tion in the physical system isolates low energy states (“annealing™), or
what is the same thing, the most probable states under the Gibbs dis-
tribution. The analogous operation under the posterior distribution
yields the maximum a posteriori (MAP) estimate of the image given the
degraded observations. The result is a highly parallel “relaxation™ algo-
rithm for MAP estimation. We establish convergence properties of the
algorithm and we experiment with some simple pictures, for which
good restorations are obtained at low signal-to-noise ratios.

Index Terms— ling, Gibbs distribution, image ion, line

The essence of our approach to restoration is a stochastic
relaxation algorithm which generates a sequence of images that
converges in an appropriate sense to the MAP estimate. This
sequence evolves by local (and potentially parallel) changes in
pixel gray levels and in locations and orientations of boundary
clements. Deterministic, iterative-improvement methods gen-
erate a sequence of images that monotonically increase the
posterior distribution (our “objective function™). In contrast,
stochastic relaxation permits changes that decrease the pos-
terior distribution as well. These are made on a random basis,
the effect of which is to avoid convergence to local maxima.
This should not be confused with “probabilistic relaxation™
(“relaxation labeling™), which is deterministic; see Section X.

The stochastic relaxation algorithm can be informally de-
scribed as follows.

1) A local change is made in the image based upon the cur-
rent values of pixels and boundary elements in the immediate
“neighborhood.” This change is random, and is generated by

process, MAP estimate, Markov random field, relaxation, scene model-
ing, spatial degradation.

I. INTRODUCTION
"l"‘HE restoration of degraded images is a branch of digital

pling from a local conditional probability distribution.

2) The local conditional distributions are dependent on a
global control parameter T called “temperature.” At low tem-
peratures the local conditional distributions concentrate on
states that increase the objective function, whereas at high
temperatures the distribution is essentially uniform. The limit-

ine cases T=0 and T=00 carrecnand racnactivaly tn orssdy

Arithmetic Coding Revis

ALISTAIR MOFFAT

The University of Melbourne
RADFORD M. NEAL
University of Toronto

PR |

Adaptation Using Single Contexts

Binlmage Image; // binary image similar to Charlmage class

Image.Load(“original.bim”); ~ —
Adaptivity
COutStream Out; :
Out.open(“original.cmp”); Input il T I e T I s
[* Header for image size */ p(()) 12 | 23 | 34 | 35 | 366 | 47 | 58 | 69 | 6/10
Out.putvic(Image.WX, 16);
Out.putvic(Image.WY, 16); p(l) 12 | U3 | w4 | 255 | 36 | 37 | 38 | 3/9 | 4/10
-

/I Arithmetic Encoding start
start_arithmetic_encode(); // initialization
context *pContext = create_context_easy(2);

for(dy=0; dy<image.WY; dy++)
for(dx=0; dx<Iimage.WX; dx++){ // raster scan order
int current_symbol = Image.GetPixel(dx, dy);
encode(pContext, current_symbol, Out);

}

delete_context(pContext); // free memory for context
finish_arithmetic_encode(Out); // arithmetic coding termination
Out.close();

Adaptation Using Multiple Contexts

start_arithmetic_encode();
context *pContext[8];
for(p=0; p<8; p++)

pContext[p] = create context_easy(2);

for(dy=0; dy<image.WY; dy++)
for(dx=0; dx<Image.WX; dx++){
int current_symbol = Image.GetPixel(dx, dy); k

b0

b1

b2

current
symbol

current pattern =

/Context—based coding

b2

bl

b0

N

/

int current_pattern = Image.GetPixel(dx-1, dy); // left pixel

current_pattern = (current_pattern << 1) + Image.GetPixel(dx, dy-1); // upper pixel

current_pattern = (current_pattern << 1) + Image.GetPixel(dx-1, dy-1); // upper left pixel

encode(pContext[current_pattern], current_symbol, Out);

}

for(p=0; p<8; p++)

delete context(pContext[p]);
finish_arithmetic_encode(Out);
Out.close();

Results

File size (bytes) [compression ratio]

eeeeeeeeeeeeeeeeeeeee

- Single Multiple
Original Context Contexts
100,004 47,211 [2.12] | 21,621 [4.62]
AR 100,004 30,476 [3.28] |3,276 [30.53]

Arithmetic Coder

= Corefiles
» arith.cpp
» context.cpp
» bitio.cpp

» Note: If you use these files for research, please give a
reference to the paper

A. Moffat, R. M. Neal, and I. H. Witten, "Arithmetic Coding
Revisited," ACM Trans. Information Systems, vol. 16, no. 3,
pPp.256-294, July 1998

= Usage
» The last commented part of “example1.cpp”

= Additional files for binary image coding
» Charlmage.cpp
» Binlmage.cpp

