
Data Compression

Arithmetic Coding

Chang-Su Kim

Arithmetic Coding

▪ Huffman coding is not always the best option

It is optimum only among the coding schemes, which

assign a fixed, integer number of bits to each symbol.

For two symbol alphabet, it always assigns 0 to one

symbol and 1 to the other symbol

Average length = 1 bit/symbol

p0 = 0.9999, p1 = 0.0001 → entropy = 0.00147 bit/symbol

▪ Arithmetic coding is better than Huffman coding

Coding efficiency

Adaptivity

Recent video coding standards incorporates arithmetic

coding

Example 1

▪ Alphabet = {A, B, C}

▪ p(A) = 0.6, p(B) = 0.3, p(C) = 0.1

▪ The messages starting with A, B and C are respectively

mapped to the half-open intervals [0, 0.6), [0.6, 0.9), and

[0.9, 1), according to their probabilities

1

0

0.6

0.9

0.9

0.87

0.78

0.6 0.87

0.888

0.897

0.9
C

B

BA

BB

BC

BCA

BCB

BCC

A

Example 1

▪ Alphabet = {A, B, C}

▪ p(A) = 0.6, p(B) = 0.3, p(C) = 0.1

▪ Let us encode a message BCA. Since it starts with B it is first

mapped to the interval [0.6, 0.9).

1

0

0.6

0.9

0.9

0.87

0.78

0.6 0.87

0.888

0.897

0.9
C

B

BA

BB

BC

BCA

BCB

BCC

A

Example 1

▪ Alphabet = {A, B, C}

▪ p(A) = 0.6, p(B) = 0.3, p(C) = 0.1

▪ The interval is then divided into three subintervals [0.6, 0.78),

[0.78, 0.87), [0.87, 0.9), corresponding to the messages

starting with BA, BB, BC, respectively. Note that the length

ratio of the subintervals is set to

0.18 : 0.09 : 0.03 = 6 : 3 : 1 = p(A) : p(B) : p(C)

1

0

0.6

0.9

0.9

0.87

0.78

0.6 0.87

0.888

0.897

0.9
C

B

BA

BB

BC

BCA

BCB

BCC

A

Example 1

▪ Alphabet = {A, B, C}

▪ p(A) = 0.6, p(B) = 0.3, p(C) = 0.1

▪ Similarly, [0.87, 0.9) is further divided into three subintervals,

and the messages starting with BCA are mapped to

[0.87, 0.888).

1

0

0.6

0.9

0.9

0.87

0.78

0.6 0.87

0.888

0.897

0.9
C

B

BA

BB

BC

BCA

BCB

BCC

A

Example 1

▪ Alphabet = {A, B, C}

▪ p(A) = 0.6, p(B) = 0.3, p(C) = 0.1

▪ The two end points can be written in binary numbers as

1

0

0.6

0.9

0.9

0.87

0.78

0.6 0.87

0.888

0.897

0.9
C

B

BA

BB

BC

BCA

BCB

BCC

A

2 4 5

2 3 7

1 1 1 1
0.87 0.11011 ,

2 2 2 2

1 1 1 1
0.888 0.11100 .

2 2 2 2

= + + + + =

= + + + + =

Example 1

▪ Alphabet = {A, B, C}

▪ p(A) = 0.6, p(B) = 0.3, p(C) = 0.1

▪ The encoder can transmit an arbitrary number within this

interval to specify that the message starts with BCA. For

example, it can transmit the sequence of three bits, 111,

which corresponds to 0.875 in decimal.

1

0

0.6

0.9

0.9

0.87

0.78

0.6 0.87

0.888

0.897

0.9
C

B

BA

BB

BC

BCA

BCB

BCC

A

Example 1

▪ Alphabet = {A, B, C}

▪ p(A) = 0.6, p(B) = 0.3, p(C) = 0.1

▪ Given 111, the decoder can follow the same division

procedure, and know that 0.875 lies within the interval [0.87,

0.888), hence the message starts with BCA.

1

0

0.6

0.9

0.9

0.87

0.78

0.6 0.87

0.888

0.897

0.9
C

B

BA

BB

BC

BCA

BCB

BCC

A

Example 1

▪ Alphabet = {A, B, C}

▪ p(A) = 0.6, p(B) = 0.3, p(C) = 0.1

▪ However, 0.875 can represent B, BA, or BAC. One way to

resolve this issue is to use one more symbol EOS (end of

sequence).

1

0

0.6

0.9

0.9

0.87

0.78

0.6 0.87

0.888

0.897

0.9
C

B

BA

BB

BC

BCA

BCB

BCC

A

Example 2

Generating A Tag

▪ We assume that the alphabet = {1,2,3,…,m}

▪ Cumulative distribution function

▪ The symbol i represented by [F(i-1), F(i)).

▪ A tag denotes a number in the interval, so it

uniquely represents the symbol. We will use the

midpoint

1

() ()
i

k

F i P k
=

=

1
() (1) ()

2
T i F i P i= − +

Generating A Tag

▪ We are encoding a sequence of symbols

▪ As we encode more symbols, the interval gets smaller.

()

1 2(, ,. ,)n

nx x x=x

() () ()

(1)

1

(1)

1

(1) (1)
(1)

(1) (1)

1

() (1) (

1) [,) : the interval for

2) Initial interval and tag

 (1)

 ()

2

 Interval length = ()

3) Iteration

 (

n n n

n n n

l u

l F x

u F x

l u
T

u l P x

l l u− −

= −

=

+
=

− =

= +

x

1) (1)

() (1) (1) (1)

() ()
()

() () (1) (1) ()

) (1)

 () ()

2

 Interval length = () () ()

n

n

n n n n

n

n n
n

n n n n n

n

l F x

u l u l F x

l u
T

u l u l P x P

−

− − −

− −

− −

= + −

+
=

− = − = x

Generating A Binary Code

() () () ()

()

1) The tag is inside the interval [,), so it uniquely represents the sequence .

2) Given the tag, we can decode the sequence .

3) However, we need to express the tag with a f

n n n n

n

T l u x

x

() ()

()

()

inte number of bits.

4) How can we do achieve this?

1
 By truncating to with log +1 bits, we can assure that

()

 is still in the interval.

n n

n

n

T T
P

T

 
 
 x

Incremental Coding: Brief Explanation

▪ Encoding

If the interval is entirely within [0, 0.5), put 0

If the interval is entirely within [0.5, 1), put 1

And so forth.

▪ Decoding

Given the series of bits (b0, b1, b2, …) , if the first k bits

unambiguously represent a number in [l(1),u(1)), output the first

symbol.

And so forth

▪ Because we are dealing with the numbers with “int” type,

which uses only four bytes, the implementation is much more

complex.

Application: Binary Image Coding

▪ Each pixel is binary, which represents 1 (black) or 0 (white)

Adaptivity

Adaptation Using Single Contexts

BinImage Image; // binary image similar to CharImage class

Image.Load(“original.bim”);

COutStream Out;

Out.open(“original.cmp”);

/* Header for image size */

Out.putvlc(Image.WX, 16);

Out.putvlc(Image.WY, 16);

// Arithmetic Encoding start

start_arithmetic_encode(); // initialization

context *pContext = create_context_easy(2);

for(dy=0; dy<Image.WY; dy++)

for(dx=0; dx<Image.WX; dx++){ // raster scan order

int current_symbol = Image.GetPixel(dx, dy);

encode(pContext, current_symbol, Out);

}

delete_context(pContext); // free memory for context

finish_arithmetic_encode(Out); // arithmetic coding termination

Out.close();

input 0 0 1 1 0 0 0 1

p(0) 1/2 2/3 3/4 3/5 3/6 4/7 5/8 6/9 6/10

p(1) 1/2 1/3 1/4 2/5 3/6 3/7 3/8 3/9 4/10

Adaptation Using Multiple Contexts

start_arithmetic_encode();

context *pContext[8];

for(p=0; p<8; p++)

pContext[p] = create_context_easy(2);

for(dy=0; dy<Image.WY; dy++)

for(dx=0; dx<Image.WX; dx++){

int current_symbol = Image.GetPixel(dx, dy);

int current_pattern = Image.GetPixel(dx-1, dy); // left pixel

current_pattern = (current_pattern << 1) + Image.GetPixel(dx, dy-1); // upper pixel

current_pattern = (current_pattern << 1) + Image.GetPixel(dx-1, dy-1); // upper left pixel

encode(pContext[current_pattern], current_symbol, Out);

}

for(p=0; p<8; p++)

delete_context(pContext[p]);

finish_arithmetic_encode(Out);

Out.close();

Context-based coding

b0 b1

b2
current

symbol

b2 b1 b0

current pattern =

Results

File size (bytes) [compression ratio]

Original
Single

Context

Multiple

Contexts

100,004 47,211 [2.12] 21,621 [4.62]

100,004 30,476 [3.28] 3,276 [30.53]

Arithmetic Coder

▪ Core files

arith.cpp

context.cpp

bitio.cpp

Note: If you use these files for research, please give a

reference to the paper

A. Moffat, R. M. Neal, and I. H. Witten, "Arithmetic Coding

Revisited," ACM Trans. Information Systems, vol. 16, no. 3,

pp.256–294, July 1998

▪ Usage

The last commented part of “example1.cpp”

▪ Additional files for binary image coding

CharImage.cpp

BinImage.cpp

