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Quantization

Digitization =
sampling (coordinate) + quantization (value)

•Quantization



Quantizer

A quantizer Q maps a continuous variable u into a 
discrete variable Q(u) in {r r r r }discrete variable Q(u) in {r1, r2, r3, …, rL}

•r1 •r2 •rk •rL-1 •rL

•t2 •t3 •tk •tk+1 •tL•tL-1 •tL+1=∞•t1=-∞

Partition the real line into L cells and map input 
values within a cell into a constant rvalues within a cell into a constant rk

Q(u) = rk if  tk ≤u < tk+1

rk : reconstruction levelrk : reconstruction level
tk : transition or decision level
Δk = tk+1 – tk : step size



Quantizer Example

Input-output graph of an 8-level quantizer
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Uniform quantizer
Except the outer two cellsExcept the outer two cells

tk+1 – tk = Δ  and rk = (tk+tk+1)/2



Classification of Quantizers

Uniform Q vs. Non-uniform Q
Unform: Δk = constant

Adaptive Q vs. Non-adaptive Q
Adaptive: quantization depends on time or pixelAdaptive: quantization depends on time or pixel 
coordinate

Scalar Q vs. Vector Q
S l i d d t ti ti f h i lScalar: independent quantization of each pixel
Vector: joint quantization of n pixels
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Lloyd-Max Quantizer



Lloyd-Max Quantizer – Centroid Condition



Lloyd-Max Quanitzer – NN condition

•rk-1 •rk •rL-1

•tk •tk+1



Design of Lloyd-Max Quantizer



Design of Lloyd-Max Quantizer 
(Sequential Version)( q )

•r1 •r2 •rk •rL-1 •rL

•t2 •t3 •tk •tk+1 •tL•tL-1 •tL+1=∞•t1=-∞

1. Pick initial sets {t2, t3, …, tL} and {r1, r2, …, rL}. Set 
k=1.
U d h h i i h id f h i l2. Update rk such that it is the centroid of the interval      
(tk, tk+1).

3 Update t s ch that it is the midpoint of r and r3. Update tk+1 such that it is the midpoint of rk and rk+1.
4. If k=L-1 goto step 5, otherwise set k=k+1 and goto

step 2step 2. 
5. Compute c, the centroid of the interval (tL, tL+1). If  

|rL-c|<ε stop Otherwise goto step 6|rL c|<ε, stop. Otherwise, goto step 6.
6. Set rL=rL-α(rL-C) and set k-1. Goto step 2. 





Properties of Lloyd-Max Quantizer



Properties of Lloyd-Max Quantizer

•+•u •Q(u)

Q( )•η = u - Q(u)



Lloyd-Max Quantizer for Uniform Distribution



Lloyd-Max Quantizer for Uniform Distribution

•r1 •r2 •rk •rL-1 •rL

•t2 •t3 •tk •tk+1 •tL•tL-! •tL+1•t1
•Δ •Δ/2



Lloyd-Max Quantizer for Other Distributions

Notice that the Lloyd-Max
•fx

•X
•()

Notice that the Lloyd Max 
quantizer reduces the 
average distortion by 
approximating the inputapproximating the input 
more precisely in regions 
of higher probability. 

•Input•Input
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Lloyd-Max Quantizer for Other Distributions
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Look up table of Lloyd Max Q is available for theseLook-up table of Lloyd-Max Q is available for these 
distributions 



Mathematical Formula for Quantizer MSE



Derivation of Approximate Formula

•Centroid condition &
if d it ll•uniform density over a cell



Derivation of Approximate Formula

•average step size 
•within this range

•ri •ri+Δu

•within this range



Derivation of Approximate Formula



Approximate Formula for Optimal MSE



Approximate Formula for Optimal MSE



Compandor

A way to use uniform quantizer efficiently for non-
uniform input densityuniform input density

w=f(u) y u = g(y)w f(u) y u  g(y)

u w y

Q( )
f

compressor
uniform

quantizer
g

expander

u w y u = Q(u)



Compandor

Equivalent to non-uniform quantizer

•w = f(u)

•non-uniform quantizer

•u



Compandor

•w = f(u)

•dw

•u•du

•Lλ(u) du = Lλ(w) dwLλ(u) du  Lλ(w) dw 
• = # of levels

• = 2 2



Optimum Mean Square Uniform Quantizer for 
Nonuniform Densities

Given data
p(u) : input densityp(u) : input density 
L : the number of levels 

Goal
find the range [t1, tL+1] that minimizes the MSE

If we assume that p(u) is an even function centered 
around 0

the range should be [-a, a]
2a = L Δ2a = L Δ
Thus, the MSE can be represented as a function of a single 
variable Δ

The output levels are not equi-probable, hence can 
be more efficiently represented using entropy coding 
techniquestechniques



Comparison

For Gaussian Source

Lloyd-Max Q provides better 
SNR than optimum uniform 

ti (2dB t B 6)quantizer (2dB at B=6)
Lloyd-Max Q and compandor 
are practically p y
indistinguishable 
Optimum uniform + entropy 
coding provides bettercoding provides better 
performance than Lloyd-Max 
Q
Shannon Q is the theoretical 
limit

No quantizer can doNo quantizer can do 
better than Shannon Q.



Contouring Artifacts

Regions of constant gray levels 
(visible: less than 6 bits/pixel)

Original (8bits/pixel)            6bits/pixel                       4bits/pixel                      2bits/pixel



Contouring Artifacts



Visual Quantization

Contouring artifacts are not well 
represented by MSE

MSE is not directly proportional to subjective y p p j
quality

There are many methods to alleviate 
th tif t i l dithese artifacts, including

Pseudo-random noise quantization



Pseudo-Random Noise Quantization

1. Add a small amount of random noise (dither) before 
quantization to break contours

2. Subtract the same noise after quantization
Reasonable image quality at 3-bit quantization



Pseudo-Random 
Noise Quantization

a) Ordinary quantization 
yields contour artifacts

b) Random noise: its 
average should be 0 so 
that the overall image 
luminance does not 

image siginalchange
c) Signal+Noise
d) Quantization of 

“Signal+Noise”Signal+Noise
At a few points, contours 
are broken due to the 
noise

e) Subtract the samee) Subtract the same 
noise from quantization 
output

Shaky image without 
contour

(e)

contour
Shaky effects (high 
frequency components) 
are less visible than 
contour artifacts

(d) quantized image signal plus noise
(e)



Pseudo-Random Noise Quantization

(a) (b)(a)     (b)
(c)     (d)

(a) 4-bit quantized image.    
C i iblContours are visible

(b) Image + random noise
(c) 4-bit quantized image of 

(b)(b)
(d) image after subtracting

the random noise 



Halftone Image Generation

Halftone Images
Binary images that give a gray scale renditionBinary images that give a gray scale rendition

•Threshold

•+ •Input image
•0≤u(m,n)≤255

•255

•255 •Two level {0,255}
•display

•Random noise
•0≤r(m,n)≤255

•255

Suppose that u(m,n) = g  for every coordinate (m,n)
Then, u(m,n)+r(m,n) will have the following values with the same probability

g, g+1, …, 255, 256, …, 255+g (before thresholding)g, g , , , , , g ( g)
0,     0, …,     0, 255, …,     255 (after thresholding)       

Thus, the average gray level will be 
256 0 255g g g−

× + × ≅0 255
256 256

g× + × ≅



Halftone Image Generation

Procedure
Optional oversampling (provides better rendition)Optional oversampling (provides better rendition)

e.g.) 256x256 →1024x1024 with repetition
Add random number
Two level quantizationTwo-level quantization

Halftone matrix (random number matrix)

⎥
⎤

⎢
⎡

1102002401 080
10    90   150   60    40 

⎥
⎤

⎢
⎡

16423622820011628460
156  148   140  132  124   36   44    52 

( )
can be repeated periodically

⎥
⎥
⎥
⎥
⎥
⎥

⎦⎢
⎢
⎢
⎢
⎢
⎢

⎣

=

305016010020
70   180  230  190  120

 130  220  250  210  140
110 200 240 170   80 

1H

⎥
⎥
⎥
⎥
⎥
⎥

⎢
⎢
⎢
⎢
⎢
⎢

=
124364452156148140132

 180  188  196  204   100  92    84    76 
 172  244  252  212   108  20    12    68 

164 236 228 200 116  28    4    60

2H⎥⎦⎢⎣ 30   50  160 100   20 

⎥
⎥
⎥
⎥
⎥
⎥

⎦⎢
⎢
⎢
⎢
⎢
⎢

⎣ 100928476180188196204
108   20     12   68   172  244  252  212

 116   28     4    60   164  236  228  200
124  36   44  52   156 148  140 1322

⎥⎦⎢⎣ 100  92   84   76  180 188  196 204



Halftone Image Generation

Halftone Image GenerationHalftone Image Generation 
Without Upsampling

(a) (b)(a)     (b)
(c)     (d)

(a) Original 8-bit image 
(b) Most significant 1-bit image 
(c) Halftone screen H2 

(d) Halftone image



Halftone Image Generation

Halftone Image GenerationHalftone Image Generation 
With Upsampling

(a) (b)(a)     (b)
(c)     (d)

(a) Halftone screen H2     (512x512)
(b) Halftone image        (512x512)
(c) Halftone screen H2     (1024x1024)
(d) Halftone image        (1024x1024)


