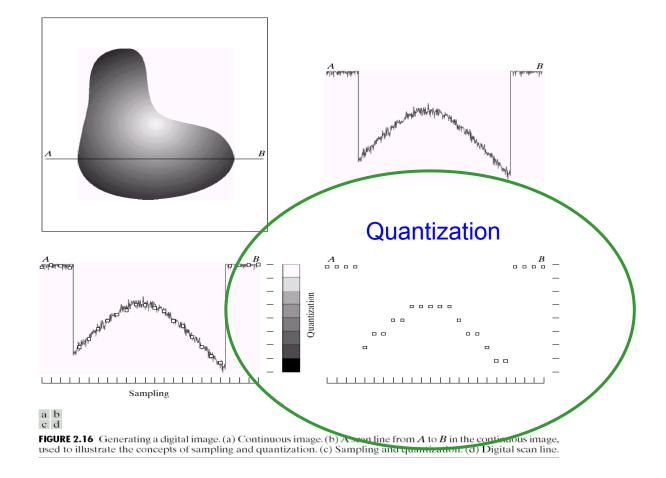
IEG4160 Image and Video Processing Quantization

Chang-Su Kim

Quantization

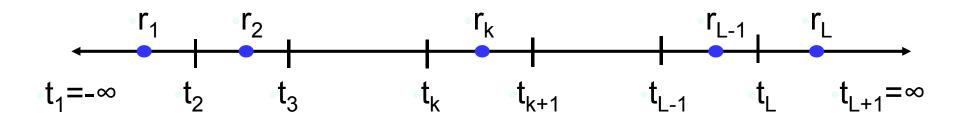
Digitization =

sampling (coordinate) + quantization (value)



Quantizer

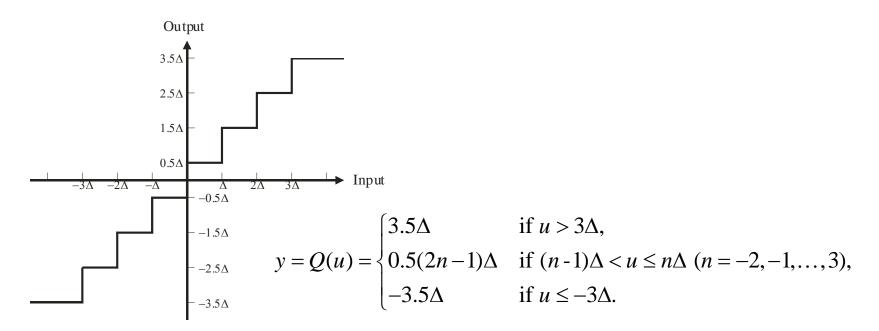
 A quantizer Q maps a continuous variable u into a discrete variable Q(u) in {r₁, r₂, r₃, ..., r_L}



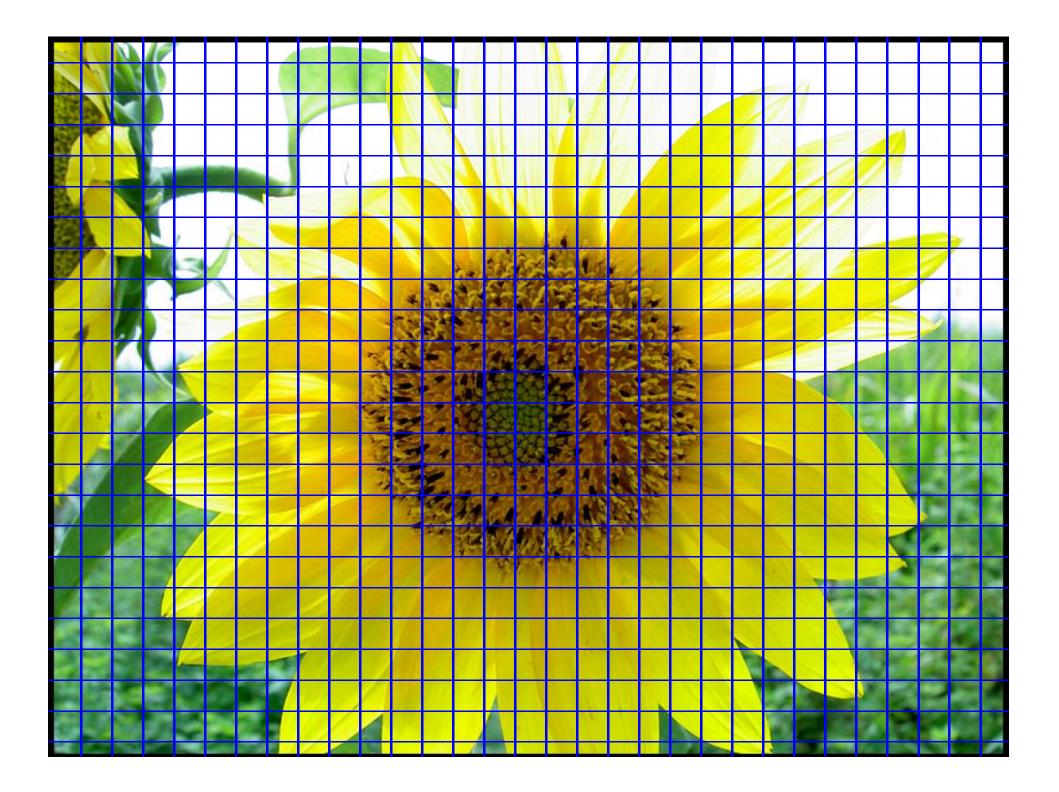
- Partition the real line into L cells and map input values within a cell into a constant r_k
 - ► $Q(u) = r_k$ if $t_k \le u < t_{k+1}$
 - r_k : reconstruction level
 - t_k : transition or decision level
 - $\Delta_k = t_{k+1} t_k$: step size

Quantizer Example

Input-output graph of an 8-level quantizer



- Uniform quantizer
 - Except the outer two cells
 - × $t_{k+1} t_k = \Delta$ and $r_k = (t_k + t_{k+1})/2$



Lloyd-Max Quantizer

Quantization error:
$$u - Q(u)$$

- Probability distribution of input: p(u)
- Mean square error (MSE)

$$\mathcal{E} = E[(u - Q(u))^2] = \int_{t_1}^{t_{L+1}} (u - Q(u))^2 p(u) du$$

Lloyd-Max quantizer minimizes *E*,
 i.e. it is the minimum mean square error (MMSE) quantizer

Lloyd-Max Quantizer – Centroid Condition

MSE

$$\mathcal{E} = \sum_{i=1}^{L} \int_{t_i}^{t_{i+1}} (u - Q(u))^2 p(u) du = \sum_{i=1}^{L} \int_{t_i}^{t_{i+1}} (u - r_i)^2 p(u) du$$

For fixed transition levels t_k 's, find the optimum reconstruction levels r_k 's Minimize each $\int_{t_k}^{t_{k+1}} (u - r_k)^2 p(u) du$

$$\begin{aligned} \mathcal{E}_k &= \int_{t_k}^{t_{k+1}} (u - r_k)^2 p(u) du \\ &= \int_{t_k}^{t_{k+1}} u^2 p(u) du - 2r_k \int_{t_k}^{t_{k+1}} u p(u) du + r_k^2 \int_{t_k}^{t_{k+1}} p(u) du \\ \therefore \quad \frac{\partial \mathcal{E}_k}{\partial r_k} &= -2 \int_{t_k}^{t_{k+1}} u p(u) du + 2r_k \int_{t_k}^{t_{k+1}} p(u) du = 0 \\ \therefore \quad r_k &= \frac{\int_{t_k}^{t_{k+1}} u p(u) du}{\int_{t_k}^{t_{k+1}} p(u) du} = E[u|u \in [t_k, t_{k+1})] \end{aligned}$$

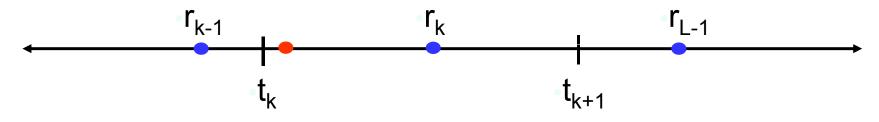
This is called the centroid (center of mass) condition

Lloyd-Max Quanitzer – NN condition

For fixed r_k 's, find the optimum t_k 's

$$\begin{aligned} \frac{\partial}{\partial t_k} \mathcal{E} &= \frac{\partial}{\partial t_k} \sum_{i=1}^L \int_{t_i}^{t_{i+1}} (u - r_i)^2 p(u) du \\ &= \frac{\partial}{\partial t_k} (\dots + \int_{t_{k-1}}^{t_k} (u - r_{k-1})^2 p(u) du + \int_{t_k}^{t_{k+1}} (u - r_k)^2 p(u) du + \dots) \\ &= (t_k - r_{k-1})^2 p(t_k) - (t_k - r_k)^2 p(t_k) = 0 \\ &\qquad (\because \frac{\partial}{\partial \alpha} \int_{\beta}^{\alpha} f(x) dx = f(\alpha), \frac{\partial}{\partial \alpha} \int_{\alpha}^{\beta} f(x) dx = -f(\alpha)) \\ &\therefore \qquad (t_k - r_{k-1})^2 = (t_k - r_k)^2 \\ &\therefore \qquad t_k = \frac{r_{k-1} + r_k}{2} \end{aligned}$$

This is called the nearest neighbor condition



Design of Lloyd-Max Quantizer

Centroid condition

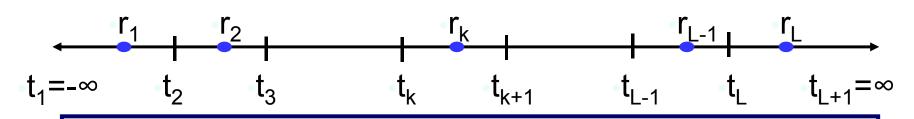
$$r_{k} = \frac{\int_{t_{k}}^{t_{k+1}} up(u) du}{\int_{t_{k}}^{t_{k+1}} p(u) du}$$

Nearest neighbor condition

$$t_k = \frac{r_{k-1} + r_k}{2}$$

These two conditions are iteratively applied to obtain the optimal quantizer

Design of Lloyd-Max Quantizer (Sequential Version)



- 1. Pick initial sets { t_2 , t_3 , ..., t_L } and { r_1 , r_2 , ..., r_L }. Set k=1.
- 2. Update r_k such that it is the centroid of the interval (t_k, t_{k+1}) .
- 3. Update t_{k+1} such that it is the midpoint of r_k and r_{k+1} .
- If k=L-1 goto step 5, otherwise set k=k+1 and goto step 2.
- 5. Compute c, the centroid of the interval (t_L , t_{L+1}). If $|r_L-c| < \varepsilon$, stop. Otherwise, goto step 6.
- 6. Set $r_L=r_L-\alpha(r_L-C)$ and set k-1. Goto step 2.

Properties of Lloyd-Max Quantizer

The quantizer output is an unbiased estimate of the input, i.e.

$$E[Q(u)] = E[u]$$

Proof)

$$E[u - Q(u)] = \sum_{i=1}^{L} \int_{t_i}^{t_{i+1}} (u - Q(u))p(u)du$$

= $\sum_{i=1}^{L} \int_{t_i}^{t_{i+1}} (u - r_i)p(u)du$
= $\sum_{i=1}^{L} \left[\int_{t_i}^{t_{i+1}} up(u)du - r_i \int_{t_i}^{t_{i+1}} p(u)du \right]$
= 0 (:: the centroid condition)

Properties of Lloyd-Max Quantizer

The quantizer error is uncorrelated with the quantizer output, i.e.

$$E[(u - Q(u))Q(u)] = 0$$

Proof)
$$E[(u - Q(u))Q(u)] = \sum_{i=1}^{L} \int_{t_i}^{t_{i+1}} (u - r_i)r_i p(u) du$$
$$= \sum_{i=1}^{L} r_i \int_{t_i}^{t_{i+1}} (u - r_i) p(u) du = 0$$

Equivalent additive noise model

$$\mathbf{u} \longrightarrow \mathbf{u} \longrightarrow \mathbf{Q}(\mathbf{u}) \quad \sigma_{\eta}^{2} = E[(u - Q(u))^{2}]$$

$$= E[u^{2}] - 2E[uQ(u)] + E[Q^{2}(u)]$$

$$= E[u^{2}] - E[Q^{2}(u)] \quad (\because E[uQ(u)] = E[Q^{2}(u)])$$

$$= \sigma_{u}^{2} - \sigma_{Q(u)}^{2} \quad (\because E[u] = E[Q(u)])$$

Lloyd-Max Quantizer for Uniform Distribution

$$p(u) = \begin{cases} \frac{1}{t_{L+1} - t_1}, & t_1 < u < t_{L+1} \\ 0, & \text{otherwise} \end{cases}$$

The input has variance $\sigma_u^2 = A^2/12$, where $A = t_{L+1} - t_1$.

From the centroid condition

$$r_{k} = \frac{\int_{t_{k}}^{t_{k+1}} up(u)du}{\int_{t_{k}}^{t_{k+1}} p(u)du} = \frac{t_{k+1}^{2} - t_{k}^{2}}{2(t_{k+1} - t_{k})} = \frac{t_{k+1} + t_{k}}{2}$$
(1)

Also, the nearest neighbor condition is

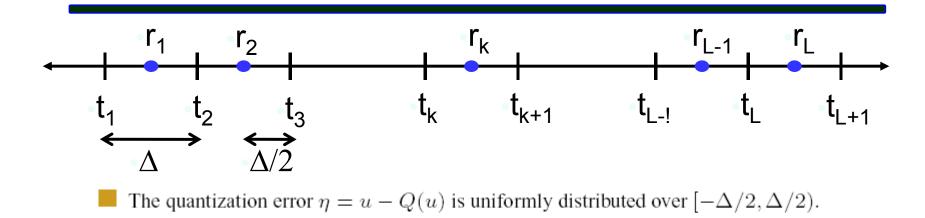
$$t_k = \frac{r_{k-1} + r_k}{2} \tag{2}$$

By inserting (1) into (2), we have

$$t_k = \frac{t_k + t_{k-1} + t_{k+1} + t_k}{4}$$

$$\Rightarrow \quad t_k - t_{k-1} = t_{k+1} - t_k = \text{constant} \doteq \Delta$$

Lloyd-Max Quantizer for Uniform Distribution



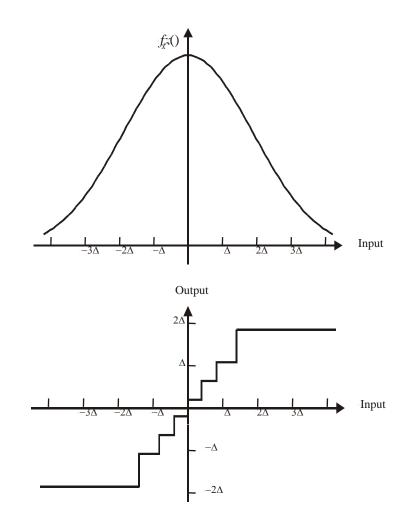
$$\mathcal{E} = E[\eta^2] = \frac{1}{\Delta} \int_{-\Delta/2}^{\Delta/2} x^2 dx = \frac{\Delta^2}{12}$$

If the quantization resolution is B bits,

$$\Delta = \frac{A}{2^B}$$

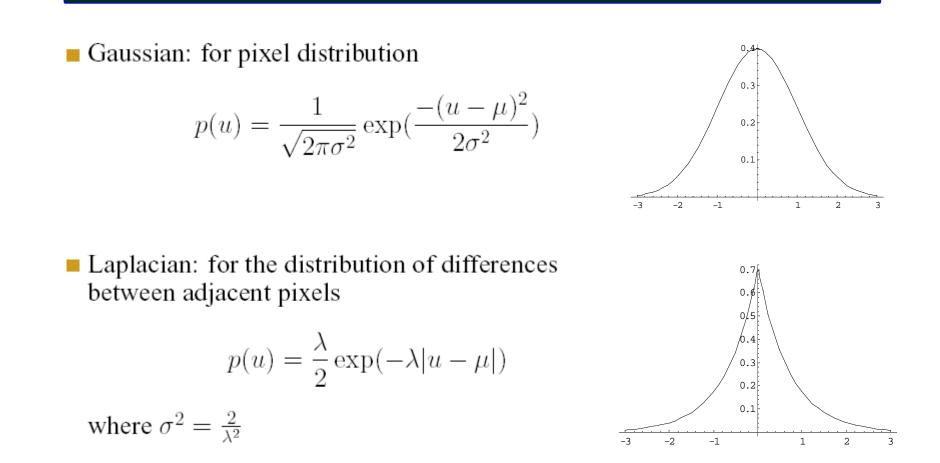
Thus, SNR is given by

Lloyd-Max Quantizer for Other Distributions



 Notice that the Lloyd-Max quantizer reduces the average distortion by approximating the input more precisely in regions of higher probability.

Lloyd-Max Quantizer for Other Distributions



 Look-up table of Lloyd-Max Q is available for these distributions

Mathematical Formula for Quantizer MSE

Exact formula

$$\mathcal{E} = \sum_{i=1}^L \int_{t_i}^{t_{i+1}} (u - Q(u))^2 p(u) du$$

Not convenient for large L

- Does not offer insight
- High resolution assumption
 - L is large

Maximum step size is small

(u) is reasonably smooth

Approximate formula

$$\mathcal{E} = \frac{1}{12L^2} \int_{t_1}^{t_{L+1}} p(u)\lambda(u)^{-2} du$$

where $\lambda(u)$ is the density function for reconstruction levels

Derivation of Approximate Formula

■ $p(u) \simeq p(r_i)$, if $u \in [t_i, t_{i+1})$ (i.e. uniform density over a cell)

•
$$P_i \triangleq Pr(u \in [t_i, t_{i+1})) = \int_{t_i}^{t_{i+1}} p(u) du \simeq (t_{i+1} - t_i) p(r_i)$$

 $\Rightarrow p(r_i) = \frac{P_i}{\Delta_i}$, where $\Delta_i \triangleq t_{i+1} - t_i$

Therefore,

$$\begin{split} \mathcal{E} &\simeq \sum_{i=1}^{L} \frac{P_i}{\Delta_i} \int_{t_i}^{t_{i+1}} (u - r_i)^2 du & \text{-Centroid condition \& uniform density over a cell} \\ &\simeq \sum_{i=1}^{L} \frac{P_i}{\Delta_i} \int_{t_i}^{t_{i+1}} (u - \underbrace{\frac{t_i + t_{i+1}}{2}}_{2})^2 du \\ &= \sum_{i=1}^{L} \frac{P_i}{\Delta_i} \frac{\Delta_i^3}{12} = \frac{1}{12} \sum_{i=1}^{L} P_i \Delta_i^2 \end{split}$$

Derivation of Approximate Formula

- Consider a family of quantizers
 - with the same relative concentration of reconstruction levels
 - but with a increasing number of total levels L
- $L(u)\Delta u$: the number of levels between u and $u + \Delta u$
- Density function for levels

$$\lambda(u) = \lim_{L \to \infty} \frac{L(u)}{L}$$

- ∫_{t1}^{tL+1} λ(u)du = 1 like probability density function

 Lλ(u)Δu levels within [u, u + Δu)
- Therefore

$$\Delta_{i} \simeq \underbrace{\frac{\Delta u}{L\lambda(r_{i})\Delta u}}_{i} = \frac{1}{L\lambda(r_{i})}$$
average step size
within this range
$$r_{i} r_{i} + \Delta u$$

Derivation of Approximate Formula

Finally,

$$\begin{aligned} \mathcal{E} &= \frac{1}{12} \sum_{i=1}^{L} P_i \Delta_i^2 \\ &= \frac{1}{12} \sum_{i=1}^{L} p(r_i) \Delta_i \frac{1}{(L\lambda(r_i))^2} \\ &= \frac{1}{12L^2} \sum_{i=1}^{L} p(r_i) \lambda(r_i)^{-2} \Delta_i \\ &= \frac{1}{12L^2} \int_{t_1}^{t_{L+1}} p(u) \lambda(u)^{-2} du \end{aligned}$$

Approximate Formula for Optimal MSE

Objective: find the best level density function $\lambda(u)$ and the corresponding MSE \mathcal{E} Recall that $\mathcal{E} = \frac{1}{12} \sum_{i=1}^{L} P_i \Delta_i^2 = \frac{1}{12} \sum_{i=1}^{L} p(r_i) \Delta_i^3$ Let $\alpha_i \triangleq p(r_i)^{1/3} \Delta_i$, then $1 \sum_{i=1}^{L} 2$

$$\mathcal{E} = \frac{1}{12} \sum_{i=1}^{L} \alpha_i^3$$

There is a constraint on α_i 's, since

$$\sum_{i=1}^{L} \alpha_i = \sum_{i=1}^{L} p(r_i)^{1/3} \Delta_i = \int_{t_1}^{t_{L+1}} p(u)^{1/3} du = c$$

Lagrangian cost function

$$\mathcal{C} = \frac{1}{12} \sum_{i=1}^{L} \alpha_i^3 + \mu \sum_{i=1}^{L} \alpha_i$$
$$\Rightarrow \frac{\partial \mathcal{C}}{\partial a_i} = \frac{1}{4} \alpha_i^2 + \mu = 0$$

Approximate Formula for Optimal MSE

α_i² (and hence α_i) should be constant for all i
α_i = p(r_i)^{1/3}Δ_i = c
Δ_i ∝ p(r_i)^{-1/3}
Step size should be small in high input density area
Recall that Δ_i ∝ 1/λ(r_i)
Therefore, λ(r_i) ∝ p(r_i)^{1/3} and

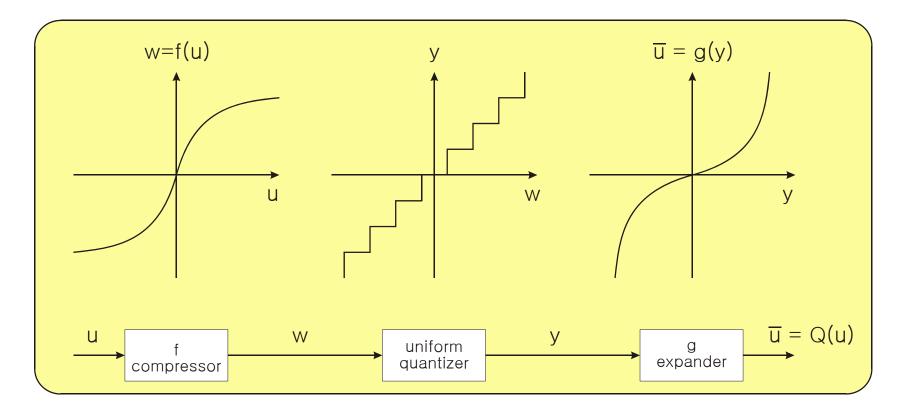
$$\lambda(u) = \frac{p(u)^{1/3}}{\int_{t_1}^{t_{L+1}} p(v)^{1/3} dv} \qquad (\because \int_{t_1}^{t_{L+1}} \lambda(u) du = 1)$$

The optimal MSE is hence given by

$$\begin{aligned} \mathcal{E} &= \frac{1}{12L^2} \int_{t_1}^{t_{L+1}} p(u)\lambda(u)^{-2} du \\ &= \frac{1}{12L^2} \frac{\int_{t_1}^{t_{L+1}} p(u)^{1/3} du}{(\int_{t_1}^{t_{L+1}} p(v)^{1/3} dv)^{-2}} \\ &= \frac{1}{12L^2} \left(\int_{t_1}^{t_{L+1}} p(u)^{1/3} du \right)^3 \end{aligned}$$

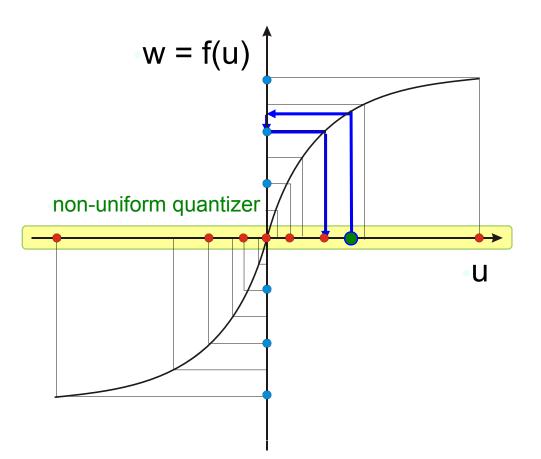
Compandor

 A way to use uniform quantizer efficiently for nonuniform input density



Compandor

Equivalent to non-uniform quantizer



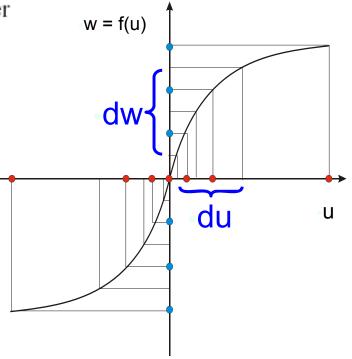
Compandor

Given an input density p(u) and a uniform quantizer within range [-a, a], how to design the compandor $f(\cdot)$ to minimize the MSE \mathcal{E} ?

To be optimum,

$$\lambda(u) = \frac{p(u)^{1/3}}{\int_{t_1}^{t_{L+1}} p(v)^{1/3} du}$$

$$\lambda(w) = \frac{1}{2a}, \qquad w \in [-a, a]$$
$$\lambda(u)du = \lambda(w)dw$$



$$\Rightarrow f'(u) = \frac{dw}{du} = \frac{\lambda(u)}{\lambda(w)} = 2a\lambda(u)$$
$$\Rightarrow f(u) = 2a\frac{\int_{t_1}^u p(v)^{1/3}dv}{\int_{t_1}^{t_{L+1}} p(v)^{1/3}dv} - a$$

$$L\lambda(u) du = L\lambda(w) dw$$

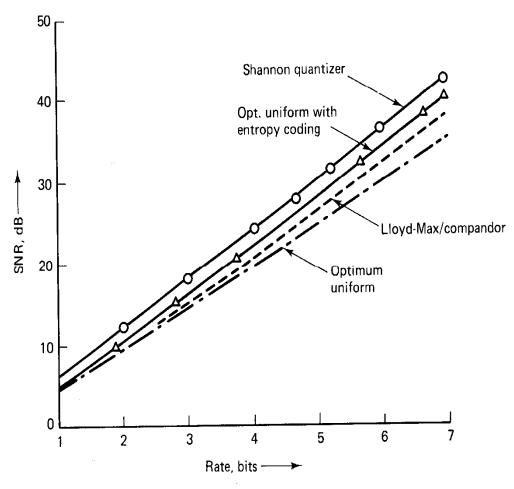
= # of levels
= 2

Optimum Mean Square <u>Uniform Quantizer for</u> <u>Nonuniform Densities</u>

- Given data
 - p(u) : input density
 - L : the number of levels
- Goal
 - find the range $[t_1, t_{L+1}]$ that minimizes the MSE
- If we assume that p(u) is an even function centered around 0
 - the range should be [-a, a]
 - ▶ 2a = L ∆
 - For Thus, the MSE can be represented as a function of a single variable Δ
- The output levels are not equi-probable, hence can be more efficiently represented using entropy coding techniques

Comparison

For Gaussian Source



- Lloyd-Max Q provides better SNR than optimum uniform quantizer (2dB at B=6)
- Lloyd-Max Q and compandor are practically indistinguishable
- Optimum uniform + entropy coding provides better performance than Lloyd-Max Q
- Shannon Q is the theoretical limit
 - No quantizer can do better than Shannon Q.

Contouring Artifacts

 Regions of constant gray levels (visible: less than 6 bits/pixel)

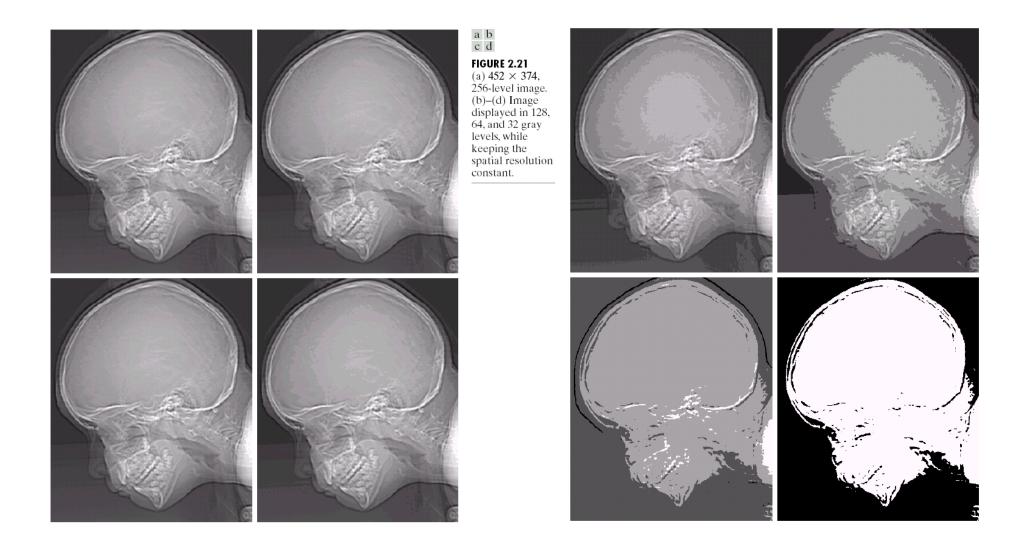
Original (8bits/pixel)

6bits/pixel

4bits/pixel

2bits/pixel

Contouring Artifacts

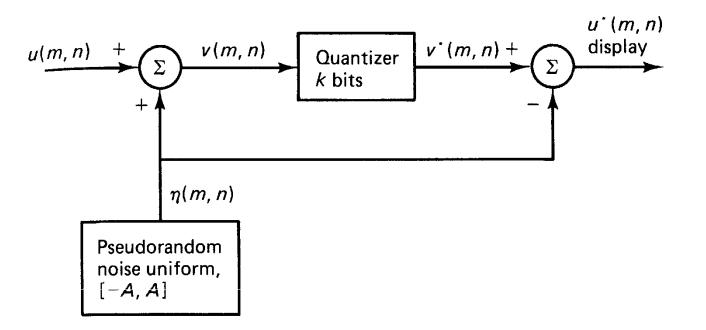


Visual Quantization

- Contouring artifacts are not well represented by MSE
 - MSE is not directly proportional to subjective quality
- There are many methods to alleviate these artifacts, including
 - Pseudo-random noise quantization

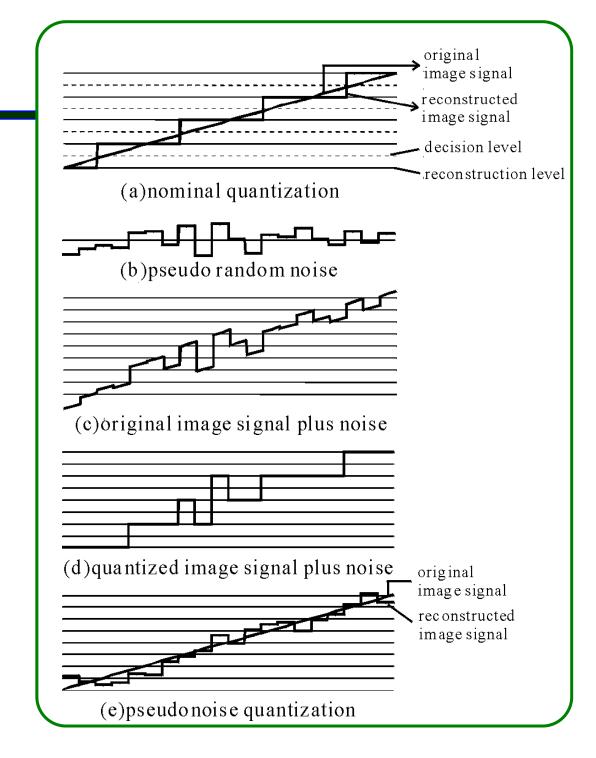
Pseudo-Random Noise Quantization

- 1. Add a small amount of random noise (dither) before quantization to break contours
- 2. Subtract the same noise after quantization
- Reasonable image quality at 3-bit quantization



Pseudo-Random Noise Quantization

- a) Ordinary quantization yields contour artifacts
- b) Random noise: its average should be 0 so that the overall image luminance does not change
- c) Signal+Noise
- d) Quantization of "Signal+Noise"
 - At a few points, contours are broken due to the noise
- e) Subtract the same noise from quantization output
 - Shaky image without contour
 - Shaky effects (high frequency components) are less visible than contour artifacts

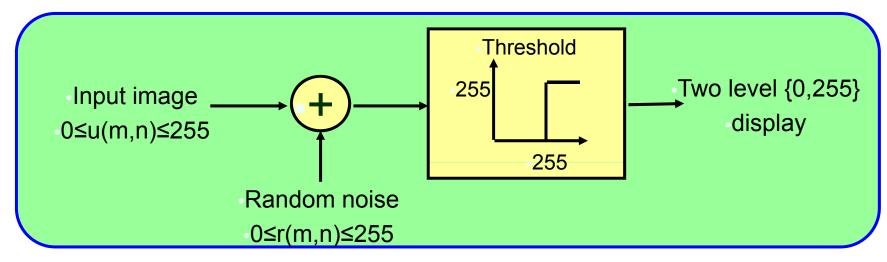


Pseudo-Random Noise Quantization

(a) (b) (c) (d)

- (a) 4-bit quantized image. Contours are visible
- (b) Image + random noise
- (c) 4-bit quantized image of(b)
- (d) image after subtracting the random noise

- Halftone Images
 - Binary images that give a gray scale rendition



- Suppose that u(m,n) = g for every coordinate (m,n)
- ▶ Then, u(m,n)+r(m,n) will have the following values with the same probability
 - **x** g, g+1, ..., 255, 256, ..., 255+g (before thresholding)
 - × 0, 0, ..., 0, 255, ..., 255 (after thresholding)
- Thus, the average gray level will be

$$\frac{256-g}{256} \times 0 + \frac{g}{256} \times 255 \cong g$$

- Procedure
 - Optional oversampling (provides better rendition)
 - **x** e.g.) $256x256 \rightarrow 1024x1024$ with repetition
 - Add random number
 - Two-level quantization
- Halftone matrix (random number matrix)
 - can be repeated periodically

$$H_{1} = \begin{bmatrix} 40 & 60 & 150 & 90 & 10 \\ 80 & 170 & 240 & 200 & 110 \\ 140 & 210 & 250 & 220 & 130 \\ 120 & 190 & 230 & 180 & 70 \\ 20 & 100 & 160 & 50 & 30 \end{bmatrix} H_{2} = \begin{bmatrix} 52 & 44 & 36 & 124 & 132 & 140 & 148 & 156 \\ 60 & 4 & 28 & 116 & 200 & 228 & 236 & 164 \\ 68 & 12 & 20 & 108 & 212 & 252 & 244 & 172 \\ 76 & 84 & 92 & 100 & 204 & 196 & 188 & 180 \\ 132 & 140 & 148 & 156 & 52 & 44 & 36 & 124 \\ 200 & 228 & 236 & 164 & 60 & 4 & 28 & 116 \\ 212 & 252 & 244 & 172 & 68 & 12 & 20 & 108 \\ 204 & 196 & 188 & 180 & 76 & 84 & 92 & 100 \end{bmatrix}$$



Halftone Image Generation Without Upsampling

> (a) (b) (c) (d)

(a) Original 8-bit image
(b) Most significant 1-bit image
(c) Halftone screen H₂
(d) Halftone image

