Data Compression - Transforms

KIM Chang-Su

changsukim@korea.ac.kr
(based on Chap. 5, Fundamentals of Digital Image Processing, by A. K. Jain)

Transform Coding

Matrix Representation of Transform

Transform

$$
v=A u
$$

- $u: N \times 1$ input vector
- $v: N \times 1$ output vector
- $A: N \times N$ matrix (transform)

Inverse transform

$$
u=A^{-1} v
$$

Unitary Transform

- $A^{-1}=A^{H}$
$\square v=A u$
$\square u=A^{H} v$
$A=\left[\begin{array}{l}b_{0}^{H} \\ b_{1}^{H} \\ \vdots \\ b_{N-1}^{H}\end{array}\right], \quad A^{H}=\left[\begin{array}{llll}b_{0} & b_{1} & \cdots & b_{N-1} \\ & & & \end{array}\right]$
- b_{i} 's: basis vectors
- $A A^{H}=I$
$b_{i}^{H} \cdot b_{j}=\delta(i-j)$

Energy Conservation of Unitary Transform

$$
\sum_{k=0}^{N-1}|v(k)|^{2}=\|v\|^{2}=\|u\|^{2}=\sum_{n=0}^{N-1}|u(n)|^{2}
$$

- Unitary transform does not change the length of input vector
- It is just an axis rotation

Matrix Representation of DFT

$$
\begin{aligned}
& v(k)=\frac{1}{N} \sum_{n=0}^{N-1} u(n) W_{N}^{k n} \\
& u(n)=\sum_{k=0}^{N-1} v(k) W_{N}^{-k n} \\
& v=\frac{1}{N}\left[\begin{array}{llll}
W_{N}^{0 \cdot 0} & W_{N}^{0 \cdot 1} & \cdots & W_{N}^{0 \cdot(N-1)} \\
W_{N}^{1 \cdot 0} & W_{N}^{1 \cdot 1} & \cdots & W_{N}^{1 \cdot(N-1)} \\
\vdots & \vdots & \ddots & \vdots \\
W_{N}^{(N-1) \cdot 0} & W_{N}^{(N-1) \cdot 1} & \cdots & W_{N}^{(N-1) \cdot(N-1)}
\end{array}\right] u \\
& u=\left[\begin{array}{llll}
W_{N}^{-0 \cdot 0} & W_{N}^{-0 \cdot 1} & \cdots & W_{N}^{-0 \cdot(N-1)} \\
W_{N}^{-1 \cdot 0} & W_{N}^{-1 \cdot 1} & \cdots & W_{N}^{-1 \cdot(N-1)} \\
\vdots & \vdots & \ddots & \vdots \\
W_{N}^{-(N-1) \cdot 0} & W_{N}^{-(N-1) \cdot 1} & \cdots & W_{N}^{-(N-1) \cdot(N-1)}
\end{array}\right] v
\end{aligned}
$$

Unitary DFT

$$
\begin{aligned}
\bar{v} & =A u=\frac{1}{\sqrt{N}}\left[\begin{array}{llll}
W_{N}^{0 \cdot 0} & W_{N}^{0 \cdot 1} & \cdots & W_{N}^{0 \cdot(N-1)} \\
W_{N}^{1 \cdot 0} & W_{N}^{1 \cdot 1} & \cdots & W_{N}^{1 \cdot(N-1)} \\
\vdots & \vdots & \ddots & \vdots \\
W_{N}^{(N-1) \cdot 0} & W_{N}^{(N-1) \cdot 1} & \cdots & W_{N}^{(N-1) \cdot(N-1)}
\end{array}\right] u \\
u & =A^{H} \bar{v}=\frac{1}{\sqrt{N}}\left[\begin{array}{llll}
W_{N}^{-0 \cdot 0} & W_{N}^{-0 \cdot 1} & & \cdots \\
W_{N}^{-1 \cdot 0} & W_{N}^{-1 \cdot 1} & & W_{N}^{-0 \cdot(N-1)} \\
\vdots & \vdots & & W_{N}^{-1 \cdot(N-1)} \\
W_{N}^{-(N-1) \cdot 0} & W_{N}^{-(N-1) \cdot 1} & \cdots & W_{N}^{-(N-1) \cdot(N-1)}
\end{array}\right] \\
\bar{v}(k) & =\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} u(n) W_{N}^{k n} \\
u(n) & =\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \bar{v}(k) W_{N}^{-k n}
\end{aligned}
$$

Karhunen Loeve Transform (KLT)

$u: N \times 1$ random vector (real)$R=E\left[u u^{T}\right]$: autocorrelation matrix of $u$$\square R^{T}=R$

- $a^{T} R a \geq 0$ for all a
$\square R$ is a symmetric non-negative definite matrix
Eigenvalue decomposition (results of linear algebra)

$$
R \phi_{k}=\lambda_{k} \phi_{k}, \quad 0 \leq k<N
$$

\square Orthonormal set of eigenvectors: $\phi_{i}^{T} \phi_{j}=\delta(i-j)$
\square Sorting of eigenvalues: $\lambda_{0} \geq \lambda_{1} \geq \ldots \lambda_{N-1} \geq 0$$\Phi=\left[\phi_{1}, \phi_{2}, \cdots, \phi_{N-1}\right]$
$\square \Phi^{-1}=\Phi^{T}: \Phi$ is orthogonal (real and unitary)

- $R \Phi=\Phi \Lambda$ where $\Lambda=\operatorname{Diag}\left\{\lambda_{k}\right\}$
\square KLT
$\square v=\Phi^{T} u$
$\square u=\Phi v$
KLT is optimum in many senses
KLT coefficients are decorrelated
\square KLT minimizes the basis restriction mean square error

$$
u \Rightarrow A \Rightarrow I_{m} \Rightarrow B \Rightarrow z
$$

$\square J_{m}=\frac{1}{N} E\left[\sum_{n=0}^{N-1}(u(n)-z(n))^{2}\right]$ is minimized when $A=\Phi^{T}, B=A^{-1}=\Phi$
For each m, among all orthogonal transforms, KLT packs the maximum energy in the first m samplesKLT depends on input characteristics
Fast KLT does not exist in general

Discrete Cosine Transform (DCT)

$\square v=C u, \quad u=C^{-1} v$
$C(k, n)= \begin{cases}\frac{1}{\sqrt{N}} & k=0 \\ \sqrt{\frac{2}{N}} \cos \frac{\pi(2 n+1) k}{2 N} & \text { otherwise }\end{cases}$

Properties

\square DCT is orthogonal, i.e. $C^{-1}=C^{T}$
\square DCT is not the real part of DFT
\square There exist fast DCTs: $O(N \log N)$
\square DCT is very close to the optimum KLT, when the input has correlation matrix

$$
R=\left[\begin{array}{lllll}
1 & \rho & \rho^{2} & \cdots & \rho^{N-1} \\
\rho & 1 & \rho & \cdots & \rho^{N-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\rho^{N-1} & \rho^{N-2} & \rho^{N-3} & \cdots & 1
\end{array}\right]
$$

and ρ is close to 1
\square DCT is widely used for image compression

Discrete Sine Transform (DST)

$v=S u, \quad u=S^{-1} v$$\square S(k, n)=\sqrt{\frac{2}{N+1}} \sin \frac{\pi(k+1)(n+1)}{N+1}$
\square Properties
\square DST is orthogonal, i.e. $S^{-1}=S^{T}$
\square The forward and inverse transforms are identical, i.e. $S^{-1}=S$
DST is not the imaginary part of DFT
\square There exist fast DSTs: $O(N \log N)$
\square DST is very close to the optimum KLT, when the input has correlation matrix

$$
R=\left[\begin{array}{lllll}
1 & \rho & \rho^{2} & \cdots & \rho^{N-1} \\
\rho & 1 & \rho & \cdots & \rho^{N-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\rho^{N-1} & \rho^{N-2} & \rho^{N-3} & \cdots & 1
\end{array}\right]
$$

and ρ lies within the interval $(-0.5,0.5)$

The Hadamard Transform

Recursive definition of the transform matrix$$
H_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{ll}
1 & 1 \\
1 & -1
\end{array}\right], \quad H_{n}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
H_{n-1} & H_{n-1} \\
H_{n-1} & -H_{n-1}
\end{array}\right]
$$For example,

$$
H_{2}=\frac{1}{2}\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]
$$

Properties
■ $H^{-1}=H^{T}=H$
Fast implementation is possible: $O(N \log N)$
Hadamard transform requires almost no multiplications
Relatively good energy compaction for highly correlated images

The Haar Transform

\square Wavelet decomposition using H_{1} as the low-pass and high-pass filtersIn fact, the Haar transform is the simplest wavelet transform
For example, the four sample Haar transform is given by

$$
A=\left[\begin{array}{rrrr}
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 \\
0 & 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right]
$$Properties

$\square A^{-1}=A^{T}$
The Haar transform is extremely fast: $O(N)$
\square Poor energy compaction

$$
\begin{aligned}
& H_{2}=\frac{1}{2}\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right] \\
& \tilde{H}_{2}=\frac{1}{2}\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 \\
1 & -1 & 1 & -1
\end{array}\right]
\end{aligned}
$$

