Data Compression

2D Transforms

Chang-Su Kim

2D Separable Transforms

- $Y=A U$ and $V=Y A^{\top}$, therefore $V=A U A^{\top}$
- $U=A^{-1} V\left(A^{\top}\right)^{-1}$
- If A is unitary, then $A^{-1}=A^{H}$
- $U=A^{H} V\left(A^{H}\right)^{\top}$
- If A is unitary and real (orthogonal), then
- U=A ${ }^{\top} V A$
- $\quad B^{i, j}=(i, j)$ th basis image $=b_{i} b_{j}^{\top}$

DFT

1D basis vectors
(real, imaginary)

2D basis images (real, imaginary)

phase

shifted magnitude

DCT

1D basis vectors

2D basis images

Hadamard Transform

1D transform matrix
$H_{2}=\frac{1}{2}\left[\begin{array}{rrrr}1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1\end{array}\right]$
$\tilde{H}_{2}=\frac{1}{2}\left[\begin{array}{rrrr}1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \\ 1 & -1 & 1 & -1\end{array}\right]$
1D basis vectors
for 16-point Hadamard transform

蓡 "

2D basis images

Haar Transform

