**KECE471** Computer Vision

#### **Binary Image Analysis**

#### Chang-Su Kim

Chapter 3, Computer Vision by Shapiro and Stockman Chapter 3, Computer Vision by Szeliski

# **Binary Images**

- Binary image B
- B[r, c]: binary value of the pixel at row r and column c
  - $-\mathbf{B}[r, c] = 1 : [r, c]$  is a foreground (or black) pixel
  - B[r, c] = 0 : [r, c] is a background (or white) pixel



# Neighborhoods

- 4-neighborhood N<sub>4</sub>
  - {A, B, C, D} is the 4-neighborhood of X
  - A neighbors X in the context of4-neighborhood
- 8-neighborhood N<sub>8</sub>
  - {A, B, C, D, E, F, G, H} is the 8neighborhood of X
  - C or F neighbors X in the context of 8-neighborhood



| E | A | F |
|---|---|---|
| В | X | С |
| G | D | Н |

# Applying Masks to Images

- It is like convolution
- For each pixel in the input image
  - Place the mask on top of the image with its origin lying on the pixel
  - Multiply the value of each input image pixel under the mask by the weight of the corresponding mask pixel, and then add those products together
  - Put the sum into the output image at the location of the input pixel being processed

# Applying Masks to Images

|                   | 4          | 0 40    | 80        | 80 80     |                |        |         |    |    |    |
|-------------------|------------|---------|-----------|-----------|----------------|--------|---------|----|----|----|
|                   | 4          | 0 40    | 80        | 80 80     | 1              | 2 1    |         |    |    |    |
|                   | 4          | 0 40    | 80        | 80 80     | 2              | 4 2    | 2       |    |    |    |
|                   | 4          | 0 40    | 80        | 80 80     | 1              | 2 1    |         |    |    |    |
|                   | 4          | 0 40    | 80        | 80        |                |        |         |    |    |    |
|                   | <i>(a)</i> | Origina | ıl grav t | one image | ( <i>b</i> ) 3 | × 3 ma | ask     |    |    |    |
| 640               | 800        | 1120    | 1280      | 1280      |                | 40     | 50      | 70 | 80 | 80 |
| 040               | 800        | 1120    | 1280      | 1280      |                | 40     | 50      | 70 | 80 | 80 |
| 640               |            | 1100    | 1280      | 1280      |                | 40     | 50      | 70 | 80 | 80 |
| 640<br>640        | 800        | 1120    |           |           |                | 40     | 50      | 70 | 80 | 80 |
| 640<br>640<br>640 | 800<br>800 | 1120    | 1280      | 1280      |                | 40     | 1.12.12 |    |    |    |

(a) Normalized result after division by the sum of the weights in the mask (16)



How many objects are there?

- How can a computer count them?
- One approach is using the corner patterns



| 1 | 2 |   |    |    |  |
|---|---|---|----|----|--|
|   |   | 3 | 4  | 5  |  |
|   |   |   |    | 6  |  |
| 7 |   | 8 |    | 9  |  |
|   |   |   | 10 | 11 |  |
|   |   |   |    |    |  |

There are 11 external corners (E = 11)



There are three internal corners (I = 3)

#### # of objects = (E - I)/4

- In an object, E I = 4
  - This is obvious for a rectangle (E = 4, I = 0)
  - When you remove or paste a black pixel, it does not change the difference
- The formula does not hold if

   different objects share a vertex or
   objects contains holes



#### Sketch of Proof

#### # of objects = (E - I)/4















You need four more right turns than left turns to make a round trip

# Spectacle



#### **Creators vs Spectators**



#### Connectedness

- A pixel [*r*, *c*] is connected to another pixel [*r*', *c*'] with respect to value *v* 
  - if there is a sequence of pixels

 $[r,c] = [r_0,c_0], [r_1,c_1], \dots, [r_n,c_n] = [r',c']$ (1) such that

 $B[r_i, c_i] = v \text{ for all } 0 \le i \le n \text{ and}$  $[r_i, c_i] \text{ neighbors } [r_{i-1}, c_{i-1}] \text{ for all } 1 \le i \le n$ 

- The sequence in (1) is called a path from [r, c] to [r', c']
- A connected component is a maximum set of pixels, such that every pair of pixels in the set are connected.
   Note: all definitions can be made in terms of the 4neighborhood or 8-neighborhood.

#### Connectedness



- 4-neighborhood
  - A and H are connected
  - A and K are not connected
  - (A, D, H) is a path from A to H
  - {A, B, C, D, E, F, G, H} is a connected component

- 8-neighborhood
  - A and H are connected
  - A and K are connected
  - (A, D, H, J, K) is a path from A to K
  - {A, B, C, D, E, F, G, H} is not a connected component

#### **Connected Components Labeling**

- A connected components labeling of a binary image *B* is a labeled image *L* in which the value of each foreground pixel is the label of its connected component
  - background pixels are assigned 0



B



#### **Connected Components Labeling**

- A connected components labeling of a binary image B is a labeled image L in which the value of each foreground pixel is the label of its connected component
  - background pixels are assigned 0



| 1 | 0                     | 1              | 1                     | 1                            | 0                                     | 2                                                |
|---|-----------------------|----------------|-----------------------|------------------------------|---------------------------------------|--------------------------------------------------|
| 1 | 0                     | 1              | 0                     | 1                            | 0                                     | 2                                                |
| 1 | 1                     | 1              | 0                     | 0                            | 0                                     | 2                                                |
| 0 | 0                     | 0              | 0                     | 3                            | 0                                     | 2                                                |
| 4 | 4                     | 4              | 0                     | 3                            | 0                                     | 2                                                |
| 0 | 0                     | 4              | 0                     | 0                            | 0                                     | 2                                                |
| 0 | 0                     | 4              | 0                     | 2                            | 2                                     | 2                                                |
|   | 1<br>1<br>0<br>4<br>0 | 10110044000000 | 101101111000444004004 | 1011101011100000444000400040 | 1011110101111000000003444030040000402 | 101110101010011100000000000304440300040000004022 |

#### **Connected Components Labeling**

- Two algorithms
  - Recursive labeling
    - Random access to the whole image is possible
  - Row-by-row labeling
    - Image is big and processed in row-by-row manner
    - Only two rows are processed at a time
    - Self-study

```
void recurisve_labeling(B, L)
{
    L = negate(B); // 1 -> -1
    label = 0;
    find_components(L, label);
    print(L);
}
```

```
void find_components(L, label)
{
   for(r=0 to MaxR) for(c=0 to MaxC)
   if(L(r, c) == -1){
        label++;
        search(L, label, r, c)
   }
```

|   | 1 |   |   |   |  |
|---|---|---|---|---|--|
| 1 | 1 | 1 |   | 1 |  |
|   | 1 | 1 | 1 | 1 |  |
|   | 1 |   | 1 |   |  |
|   |   |   |   |   |  |

|    | -1 |    |    |    |  |
|----|----|----|----|----|--|
| -1 | -1 | -1 |    | -1 |  |
|    | -1 | -1 | -1 | -1 |  |
|    | -1 |    | -1 |    |  |
|    |    |    |    |    |  |

```
void search(L, label, r, c)
```

```
L[r, c] = label;
Nset = neighbors(r, c); // Nset becomes the 4-neighborhood of [r, c]
for each [r', c'] in Nset {
    if(L[r', c'] == -1)
        search(L, label, r', c'); // recursion
}
r=1, c=2, label =1
```

|    | 1  |    |    |    |  |
|----|----|----|----|----|--|
| -1 | -1 | -1 |    | -1 |  |
|    | -1 | -1 | -1 | -1 |  |
|    | -1 |    | -1 |    |  |
|    |    |    |    |    |  |

```
void search(L, label, r, c)
```

{

```
L[r, c] = label;
Nset = neighbors(r, c); // Nset becomes the 4-neighborhood of [r, c]
for each [r', c'] in Nset {
    if(L[r', c'] == -1)
        search(L, label, r', c'); // recursion
}
```

**Nset** contains north, west, east, south pixels in that order

|    | 1  |    |    |    |  |
|----|----|----|----|----|--|
| -1 | -1 | -1 |    | -1 |  |
|    | -1 | -1 | -1 | -1 |  |
|    | -1 |    | -1 |    |  |
|    |    |    |    |    |  |

```
void search(L, label, r, c)
```

```
L[r, c] = label;
Nset = neighbors(r, c); // Nset becomes the 4-neighborhood of [r, c]
for each [r', c'] in Nset {
    if(L[r', c'] == -1)
        search(L, label, r', c'); // recursion
}
```

|    | 1  |    |    |    |  |
|----|----|----|----|----|--|
| -1 | 1  | -1 |    | -1 |  |
|    | -1 | -1 | -1 | -1 |  |
|    | -1 |    | -1 |    |  |
|    |    |    |    |    |  |

```
void search(L, label, r, c)
```

```
L[r, c] = label;
Nset = neighbors(r, c); // Nset becomes the 4-neighborhood of [r, c]
for each [r', c'] in Nset {
    if(L[r', c'] == -1)
        search(L, label, r', c'); // recursion
}
```

|   | 1  |    |    |    |  |
|---|----|----|----|----|--|
| 1 | 1  | -1 |    | -1 |  |
|   | -1 | -1 | -1 | -1 |  |
|   | -1 |    | -1 |    |  |
|   |    |    |    |    |  |

```
void search(L, label, r, c)
```

```
L[r, c] = label;
Nset = neighbors(r, c); // Nset becomes the 4-neighborhood of [r, c]
for each [r', c'] in Nset {
    if(L[r', c'] == -1)
        search(L, label, r', c'); // recursion
}
```



```
void search(L, label, r, c)
```

```
L[r, c] = label;
Nset = neighbors(r, c); // Nset becomes the 4-neighborhood of [r, c]
for each [r', c'] in Nset {
    if(L[r', c'] == -1)
        search(L, label, r', c'); // recursion
}
```



```
void search(L, label, r, c)
```

```
L[r, c] = label;
Nset = neighbors(r, c); // Nset becomes the 4-neighborhood of [r, c]
for each [r', c'] in Nset {
    if(L[r', c'] == -1)
        search(L, label, r', c'); // recursion
}
```



```
void search(L, label, r, c)
```

```
L[r, c] = label;
Nset = neighbors(r, c); // Nset becomes the 4-neighborhood of [r, c]
for each [r', c'] in Nset {
    if(L[r', c'] == -1)
        search(L, label, r', c'); // recursion
}
```



```
void search(L, label, r, c)
```

```
L[r, c] = label;
Nset = neighbors(r, c); // Nset becomes the 4-neighborhood of [r, c]
for each [r', c'] in Nset {
    if(L[r', c'] == -1)
        search(L, label, r', c'); // recursion
}
```

|   | 1 |   |    |    |  |
|---|---|---|----|----|--|
| 1 | 1 | 1 |    | 2  |  |
|   | 1 | 1 | -1 | -1 |  |
|   | 1 |   | -1 |    |  |
|   |   |   |    |    |  |

#### **Review of Recursion**

```
int FiboR (int n)
{
    if(n<=1) return 1;
    else
       return FiboR(n-1)+FiboR(n-2);
}</pre>
```

```
int FiboD (int n)
 if (n < = 1) return 1;
 else{
  int *temp = new int[n+1];
  temp[0] = temp[1] = 1;
  for(int i=2; i<=n; i++)
     temp[i] = temp[i-1]+temp[i-2];
  int result = temp[n];
  delete temp;
  return result;
```



# Binary Image Morphology

- Structuring elements

   One pixel is denoted as its origin
- Basic operations
  - Translation
  - Dilation
  - Erosion
  - Closing
  - Opening

#### 

- mor·phol·o·gy (môr-fŏl'ə-jē) noun Abbr. morph., morphol.
- a. The branch of biology that deals with the form and structure of organisms without consideration of function. b. The form and

Ex) Structuring elements with their origins





#### Translation

• The translation  $\mathbf{X}_t$  of a set of pixels  $\mathbf{X}$  by a position vector t

 $\mathbf{X}_{t} = \{x + t | x \in \mathbf{X}\}$ 

 In this and following definitions, sets contain the coordinates of 1 (black) pixels



What is t?

## Dilation

• The dilation of a binary image **B** by a structuring element **S** 

$$\mathbf{B} \bigoplus \mathbf{S} = \bigcup_{\mathbf{b} \in \mathbf{B}} \mathbf{S}_{\mathbf{b}}$$

- The structuring element is put over each black pixel in **B**
- All the black pixels compose the dilation result.



## Dilation

• The dilation of a binary image **B** by a structuring element **S** 

$$\mathbf{B} \bigoplus \mathbf{S} = \bigcup_{\mathbf{b} \in \mathbf{B}} \mathbf{S}_{\mathbf{b}}$$

- The structuring element is put over each black pixel in **B**
- All the black pixels compose the dilation result.



#### Erosion

• The erosion of a binary image **B** by a structuring element **S** 

$$\mathbf{B} \bigcirc \mathbf{S} = \{t | \mathbf{S}_t \subset \mathbf{B}\}$$

– If the translated  ${\bf S}_t$  is wholly contained in  ${\bf B},$  t is set black in the erosion result



B



S



 $\mathbf{B} \ominus \mathbf{S}$ 

#### Erosion

• The erosion of a binary image **B** by a structuring element **S** 

$$\mathbf{B} \bigcirc \mathbf{S} = \{ \mathbf{t} | \mathbf{S}_{\mathbf{t}} \subset \mathbf{B} \}$$

– If the translated  ${\bf S}_t$  is wholly contained in  ${\bf B},$  t is set black in the erosion result



B







# Closing

• The closing of a binary image **B** by a structuring element **S** 

 $\mathbf{B}\boldsymbol{\cdot}\mathbf{S}=(\mathbf{B}\oplus\mathbf{S})\ominus\mathbf{S}$ 









# Closing

• The closing of a binary image **B** by a structuring element **S** 

 $\mathbf{B}\boldsymbol{\cdot}\mathbf{S}=(\mathbf{B}\oplus\mathbf{S})\ominus\mathbf{S}$ 









# Closing

• The closing of a binary image **B** by a structuring element **S** 

 $\mathbf{B}\boldsymbol{\cdot}\mathbf{S}=(\mathbf{B}\oplus\mathbf{S})\ominus\mathbf{S}$ 

- Ignoring boundary effects, the closing makes the input bigger
- The closing fills tiny gaps in the input image



B







# Opening

• The opening of a binary image **B** by a structuring element **S** 

 $\mathbf{B} \circ \mathbf{S} = (\mathbf{B} \ominus \mathbf{S}) \oplus \mathbf{S}$ 



Β



S



 $\mathbf{B} \ominus \mathbf{S}$ 

# Opening

• The opening of a binary image **B** by a structuring element **S** 

 $\mathbf{B} \circ \mathbf{S} = (\mathbf{B} \ominus \mathbf{S}) \oplus \mathbf{S}$ 

- The opening makes the input smaller
- The opening erases tiny components or thin extrusions



B



S



B o S

#### **Application: Gear-Tooth Inspection**



(a) Original image **B** 



 $(c) \mathbf{B2} = \mathbf{B1} \oplus \mathbf{hole\_mask}$ 



(e) **B7** (see text)



(g)  $B9 = B8 \oplus tip\_spacing$ 



 $(b) \mathbf{B1} = \mathbf{B} \ominus \mathbf{hole\_ring}$ 



 $(d) \mathbf{B3} = \mathbf{B} \text{ OR } \mathbf{B2}$ 



(f) **B8** = **B** AND **B7** 



(h) RESULT = ((B7–B9)  $\oplus$ **defect\_cue**) OR B9

- B7
  - Open B3 to remove the teeth (B4)
  - Dilate B4 to make it larger (B5)
  - Dilate B5 to make it even larger (B6)

$$- B7 = B6 - B5$$

• Let *R* denote a region or the set of its pixel coordinates

• Area 
$$A = \sum_{(r,c)\in R} 1$$

• Centroid  $(\overline{r},\overline{c})$ 

$$\overline{r} = \frac{1}{A} \sum_{(r,c)\in R} r \text{ and } \overline{c} = \frac{1}{A} \sum_{(r,c)\in R} c$$



- Perimeter
  - 4-connected perimeter  $P_4 = \{(r,c) \in R \mid N_8(r,c) - R \neq \phi\}$ - 8-connected perimeter

$$P_8 = \{ (r,c) \in R \mid N_4(r,c) - R \neq \phi \}$$



• Perimeter length



• Haralick's circularity measure

$$C = \frac{\mu}{\sigma} = \frac{\frac{1}{K} \sum_{k=0}^{K-1} ||(r_k, c_k) - (\overline{r}, \overline{c})||}{\left(\frac{1}{K} \sum_{k=0}^{K-1} [||(r_k, c_k) - (\overline{r}, \overline{c})|| - \mu\right]^2\right)^{1/2}}$$

- $-(r_{k'}, c_{k})$ : border pixels on the perimeter
- K: the number of border pixels
- C is bigger as the region is more circular

- Spatial moments
  - Second-order row moment

$$\mu_{rr} = \frac{1}{A} \sum_{(r,c)\in R} (r - \overline{r})^2$$

- Second-order column moment

$$\mu_{cc} = \frac{1}{A} \sum_{(r,c)\in R} (c - \overline{c})^2$$

- Second-order mixed moment

$$\mu_{rc} = \frac{1}{A} \sum_{(r,c) \in R} (r - \overline{r}) (c - \overline{c})$$

# Region Adjacency Graph (RAG)

- Two regions A and B are adjacent if a pixel in A neighbors a pixel in B
- In RAG, each node represents a region of the image, and an edge connects two nodes if the corresponding regions are adjacent





• Chamfer matching (binary shape matching)



Each pixel value denotes the distance to the nearest feature pixel

DT allows more variability between a template and an object of interest in the image because a distance image provides a smooth cost function.

D. M. Gavrila, "A Bayesian, exemplar-based approach to hierarchical shape matching," IEEE Trans. Pattern Anal. Mach. Intell., Vol.29, No.8, pp.1408-1421, 2007.

- Distance between  $p = (x_1, y_1)$  and  $q = (x_2, y_2)$ 
  - Manhattan distance

$$d_1(p,q) = |x_1 - x_2| + |y_1 - y_2|$$

Euclidean distance

$$d_2(p,q) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

- We use  $d_1$  in this application
- Distance transform

- For p with 
$$\mathbf{B}(p) = 1$$
  
 $D(p) = \min_{\mathbf{B}(q)=0} d_1(q, p)$ 

Compute the distance to the nearest background pixel

• Example

| 0 | 0 | 0 | 0 | 1 | 0 | 0 |
|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 1 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 0 |
| 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |

| 0 | 0 | 0 | 0 | 1 | 0 | 0 |
|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 1 | 1 | 0 | 0 |
| 0 | 1 | 2 | 2 | 2 | 1 | 0 |
| 0 | 1 | 2 | 2 | 1 | 1 | 0 |
| 0 | 1 | 2 | 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |



- Procedure: Two sweeps for nonzero pixels only
  - (b) forward sweep  $D(r,c) = \min\{1 + D(r-1,c), 1 + D(r,c-1)\}$
  - (c) backward sweep  $D(r,c) = \min\{D(r,c), 1 + D(r+1,c), 1 + D(r,c+1)\}$

#### Thresholding Gray-Scale Images to Make Binary Images

- The histogram h of an image I is a function, given by
  - h(m) = the
     number of pixels
     in I which have
     value m



#### Thresholding Gray-Scale Images to Make Binary Images





