1. Answer the questions in Yes or No.
(a) In the 4-neighborhood definition, are A and F connected?
(b) In the 4-neighborhood definition, is $\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$ a connected component?
(c) In the 8-neighborhood definition, are A and F connected?
(d) In the 8 -neighborhood definition, is $\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$ a connected component?

2. An image B and a structuring element \mathbf{S} is given below. The origin of the structuring element is denoted by the letter ' O .'

Binary Image \mathbf{B}

Structuring Element S
(a) In the 8-neighborhood sense, are ' A ' and ' K ' connected?
(b) In the 8 -neighborhood sense, is ($\mathrm{A}, \mathrm{B}, \mathrm{D}, \mathrm{H}$) a path?
(c) In the 8 -neighborhood sense, is ($\mathrm{A}, \mathrm{D}, \mathrm{H}$) a path?
(d) Let us define the length of a path $\left(\mathrm{A}_{0}, \mathrm{~A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}}\right)$ as $\mathrm{n}=$ the number of elements in the sequence -1 .
In the 4-neighborhood sense, what is the shortest length of a path between ' A ' and ' H '?
(e) Plot the dilation result $\mathbf{B} \oplus \mathbf{S}$.
(f) In the dilation result $\mathbf{B} \oplus \mathbf{S}$, in the 8-neighborhood sense, are ' A ' and ' K ' connected?
3. Close the image B with the structuring element S . The origin of the structuring element is its center.

B

S
4. We learned the concepts of entropy and mutual information.
(a) Let X be a random variable with $\mathrm{p}(1)=\frac{1}{2}, \mathrm{p}(2)=\frac{1}{4}, \mathrm{p}(3)=\frac{1}{8}, \mathrm{p}(4)=\frac{1}{8}$. What is the entropy $\mathrm{H}(\mathrm{X})$?
(b) Let Y be another random variable. Given the random variable X in (a), what is the maximum possible value of $\mathrm{I}(\mathrm{X} ; \mathrm{Y})$? When is the maximum achieved?
5. Let X and Y be random variables with symbols $\{1,2,3\}$ and joint distribution $\mathrm{p}(\mathrm{x}, \mathrm{y})$, which is given by

$$
\frac{1}{9}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 2 \\
0 & 0 & 3
\end{array}\right]
$$

where the element in x-th row and y-th column is $p(x, y)$. Determine $H(X)$ and $I(X ; Y)$
6. A method to design a decision tree is to use the concept of the mutual information. Specifically, we find the feature X , which maximizes the mutual information $\mathrm{I}(\mathrm{X} ; \mathrm{C})$ with the class C , and use it in the root node. Suppose that you find the optimal feature X . A friend of yours told you that she made a better feature Y from X using the relation $Y=1-2 X$ and improved the classification performance. Did she tell you a lie or a truth?
7. The owner of a skip shop must order skis for the upcoming season. Orders must be placed in quantities of 25 pairs of skis. The cost per pair of skis is $\$ 50$ if 25 are ordered, $\$ 45$ if 50 are ordered, and $\$ 40$ if 75 are ordered. The skis will be sold at $\$ 75$ per pair. Any skis left over at the end of the year can be sold for sure at $\$ 25$ a pair. If the owner runs out of skis during the season, he will suffer a loss of "goodwill" among unsatisfied customers. He rates this loss at $\$ 5$ per unsatisfied customer. The owner feels that the demand for the skis will be $30,40,50$ or 60 pairs with probabilities $0.2,0.4,0.2$ and 0.2 , respectively. What is the Bayesian (= as profitable as possible) action that the owner should take?

