KECE471 Computer Vision

Filtering and Enhancing Images

Chang-Su Kim

Chapter 5, Computer Vision by Shapiro and Stockman
Note: Some figures and contents in the lecture notes of Dr. Stockman are used partly.



Make it better for human or
machine vision

(a) original (b) Laplacian of (a) (e) smoothed (a)

() = (a)+(b) (d) gradient of (a) (9) = (@)+(f) (h) power-law transform of (g)



Make it better for human or
machine vision

abc

FIGURE 4.20 (a) Original image (1028 X 732 pixels). (b) Result of filtering with a GLPF with D, = 100.
{c) Result of filtering with a GLPF with Dy, = 80. Note reduction in skin fine lines in the magnified sections
of (b) and (c).



Make it better for human or
machine vision

Medium
noise




Image Enhancement and
Restoration

e Enhancement

— Subjective improvement of image quality to
increase the detectability of important image
details or objects by human or machine

 Restoration

— Object recovery of original image from
degraded image

— Knowledge on the image degradation process
IS required



Point Operator

Input Image Output Image
f(le) >t T > g(le)

» Point processing
gixy) = TLf(xy) ]

— Output pixel value depends only on the input pixel value at
the same location

— The enhancement system is fully described by
s = T(r)
where s = g(x,y) and r = f(x,y)



Point Operator

i
II
-EJ'_I %'I-J :
=l 2 |
T I a— T(r) |
I
|
|
L !
L
Dark +—— Light Dark -+—— Light
Contrast stretching for Gray-to-binary

medium gray levels iImage converter
- /AN Y




Point Operator
— Gamma Correction

S=Cr/
— ¢ =255 ;
[0,255] —[0,255]

y<1:
— expand dark levels and
compress bright levels

v>1:
— expand bright levels and
compress dark levels

Varying y controls the
amount of expansion and
compression

Output gray level, s
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Point Operator
— Histogram Equalization

Histograms are the basis for numerous spatial domain image
processing techniques

— Rough estimate of probability distribution of gray levels
— Simple to compute

Histogram

— 1 k-th gray level
— n,: the number of pixels in the image having gray level r,

Normalized histogram

p(ry) = ni/n

— n: the total number of pixels

- Zk: p(rk) =1



Point Operator

— Histogram Equalization

Dark image

Bright image

High-contrast image

In general, the uniform
distribution of gray levels
Is desirable

» high contrast

» a great deal of details

» high dynamic range



Point Operator
— Histogram Equalization

« Example: An image of 128 pixels. There are 8 gray levels only.

— Note that each gray level should have 16 pixels in the output histogram
o | 0 1 ]2 ]3 1 4]5 6|7
Ny 1 7 21 35 35 21 7 1

>N, T 8 29 64 99 120 127 128
T(r) O 0 1 3 9 / 7 7

— ldeally, starting from the smallest gray level,

* the first 16 pixels should be assigned gray level 0 0,1=>0)

+ 32 pixels => gray level 0 or 1 0,1,2=>0,1)

* 48 pixels => gray level 0, 1, or 2 Skip

* 64 pixels => gray level 0, 1, 2, 3 0,1,2,3=>0,1,2,3)

+ 80 pixels => gray level 0, 1, 2, 3,4 Skip

* 96 pixels => gray level 0, 1, 2, 3,4, 5 Skip

+ 112 pixels => gray level 0, 1, 2, 3,4, 5, 6 (0,1,2,3,4=>0,1,2,3,4,5, 6)

+ 128 pixels => gray level 0, 1, 2, 3, 4,5, 6, 7 (0,1,2,3,4,5,6,7=>0,1,2,3,4,5,6,7)



Point Operator
— Histogram Equalization

« Example: An image of 128 pixels. There are 8 gray levels only.

Note that each gray level should have 16 pixels in the output histogram

More sophisticated equalization

n 012345 6 7
Ny T 7 21 35 35 21 7 1

>Ny T 8 29 04 oS 120 127 128
T(rk) 0 0 1?: 183 p;iixféfs g;fgppi?felfs

ol 111111122222 22]2]=>]0
2l 2222222222223 |[3]3[=>]1
33333333333 |33]3][|3][3]=-1]2
3333|333 3333|3333 ][3]=-1]3
4l alalala|lalala|lala|lalala|lala|la|l-]a
4l alalalalalalalalalalalala]lala]|-]5s
4 lafa|s|s|s|s5|s5|s5|5]|s5|s5]|5|s5[5]5][~]G¢
s5|s5|s5|s5|s5|5]|s5|5]|6|6|6|6|l6]|6|6]|7|-]7
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Fig. 2. SHE and SHS: (a) original image. (b) output of SHE. and (c) output of SHS. (d). (e). and (f) are the histograms of (a). (b)., and (c).
respectively.



(d) (e) ()

Fig. 3. (a) Original image, (b) output of SHE. and (c) output of SHE + POCS. (d). (e). and (f) are enlarged parts of (a). (b). and (c). respectively.
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Fig. 4. Comparison of the proposed algorithm with the conventional histogram equalization method in [1]: (a) the original image SANTA,
(b) the conventional histogram equalization method. (c) the proposed SHE + POCS algorithm, and (d) the proposed SHS + POCS algorithm.
(e). (f). (g). and (h) are enlarged parts of (a), (b), (c), and (d). respectively.



Removal of Small Image Regions

* Removal of Salt-and-Pepper Noise

8-neighbor decision 4-neighbor decision
X[ X[X X[ X[ X X X
X|Lx] o [xX[x][X Xx[L]x] o [X[x]X
XXX XXX X X




Removal of Small Image Regions

« Removal of Small Components

— Count the number of pixels in a component. If
It is less than a threshold, remove the
component.

— ex) Threshold 12




Masking (Linear Filtering)

S , = Mask is moved from pixel to pixel

= At each location, the mask coefficients are
multiplied by the corresponding pixel
values, and then summed up

g(le) = W(‘1,‘1)f(X‘1IY‘1)
+ w(-1,0)f(x-1,y) + ...
+ w(1, DHf(x+1,y+1)

Image fix. ¥)
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Masking (Linear Filtering)

Masking with a mask w of size (2a + 1) x (2b 4+ 1)

glz,y) = Z Z w(s. t)fle+ s, y+1t)

i=—ia f=—2"h

Convolving with a filter k of size (2a + 1) x (264 1)

.l' i b HI
g (x,y) = E E his,t)flx —s,y —1)
S=—a f=—
Note that g(x,y) = g'(x,y) ifw(s, t) = h({—s, —t)
For masking, we use the following notation also wy 0, w;
R = E Wiz = w21 +wozo + ...+ Wiz wy ws We
i=1
w- Wy Wy
where w; ’s are masking coefficients and z;’s are pixel values.




Masking (Linear Filtering)

Boundary problem
1. Limit the excursion of the center of the mask, so that
the mask is fully contained within the image
»  Output image is smaller than input image

2. Extrapolate the input image sufficiently, so that the
mask can be applied near the boundaries also.

Zero padding

Repetition

Mirroring

etc
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Smoothing Filters

« Averaging filter (box filter) and weighted averaging filter

1 1 1 1 2 1

=Rl
=2}

« Blends with adjacent pixel values

* Blurring
— Removal of small details before large object extraction
— Bridging of small gaps in lines or curves
— Reduction of sharp transitions in gray levels
» Advantage: noise reduction
» Disadvantage: edge blurring



Smoothing Filters

« Gaussian filter

g(x,y)=cd > w(s,t)f(x+s,y+t)

where

(s°+t%)
w(s,t)=e 2o
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Smoothing Filters
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* Losing edges
* Reducing noises
« Removing small objects



Smoothing Filters

» Finding objects of interest

abc

FIGURE 3.36 (a) Image from the Hubble Space Telescope. (b) Image processed by a 15 X 15 averaging mask.
(c) Result of thresholding (b). (Original image courtesy of NASA.)



Order-Statistics Filter

Sort the gray levels of the neighborhood
» (01,22 3,45, 6,6) 6
min median max
Min filter
»  Replace the center pixel with the minimum gray level (0) 2
Max filter
»  Replace the center pixel with the maximum gray level )
(6)
Median filter
»  Replace the center pixel with the median (3)
»  Excellent suppression of salt-and-pepper noises without

blurring




Video Deraining and Desnowing

TIP
Sept. 2015



Edge Detection Using Difference Masks

 Finding the image points of high contrast
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Edge Detection Using Difference Masks

 Difference masks
— cf. Sum masks for smoothing
— Derivative in digital domain

* T1st-order derivative (1D case)

of
= 0= f(x-1)

o 2nd_order derivative

Ot (x4 F(O—[F ()~ F(x—D)] = F(x+1) =2 (x)+ f (x—1)

S =



Edge Detection Using Difference Masks

N f(x)

SRR

N = S[-1] | S[a) [5[+1] [S[2+2]

Masks
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Mask [-1, O, 1] for 1st Derivative

S 121121121121 12124 |24 [ 24| 24 | 24
SilalM| ol ol ol oj12p12]1 0] o 0o O

(a) S; is an upward step edge

Sa 24124124124 24| 12112121212
Sel@ M) Oof O O Of-12]-12) 0| O O] 0O

(b) Sy is a downward step edge

Double responses at the transition



Mask [-1, O, 1] for 1st Derivative

SslalM ol of of 3] 6] 6] 6] 3[ of 0o

(c) 53 is an upward ramp

Sy 1201211212124 ) 1211211212 12
Sy|l@ | M| 0o O Of12 Of-12) O O Of 0O

(d) Sy is a bright impulse or “line”

An impulse signal generates an “up-and-down” response



Mask [-1, 2, -1] for 2"d Derivative

51 121121121121 121242412424 |24
Sifel M o] o] ol of-12[12JT o] o[ o] 0

(a) 51 is an upward step edge

Sq 24 (24 (24124124 ) 1211211212 12
Sel@ | M) O 0 O Op12)-120 0] 0| 0

(b) S, is a downward step edge

"Up-and-down” responses at edges



Mask [-1, 2, -1] for 2"d Derivative

S 1211211211215 18211242424
Sil@| M| o O O}-3] 0 0] o} 31 0] 0O

(c) S3 is an upward ramp

12112112 12124 12 (1212|1212
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(d) Sy 1s a bright impulse or “line”

A ramp edge generates zero responses except at the
starting and ending points.



Difference Masks for 2D Images

 Gradient

of of
Vf (X, y) - (&,&]

— The maximum change occurs along the direction of
gradient




Difference Masks for 2D Images

* Prewitt Masks

- 110 ] 1 11111
Higher intensities af af
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Magitude of gradient |Vf|=146.4
Angle of gradient & =tan™(100/107) = 43.1°



Difference Masks for 2D Images

 Sobel Masks

110| 1 1121
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« For computational efficiency, the magnitude of
gradient is sometimes approximated by

wil= (2] +(Z)
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Examples of Gradient Images

(d} Gradient image
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Examples of Gradient Images

Input image

Gradient image

ab
FIGURE 3.45

Optical image of
contact lens (note
defects on the
boundary at 4 and
5 o’clock).

(b) Sobel
cradient.
(Original image
courtesy of

Mr. Pete Sites.
Perceptics
Corporation.)



