KECE471 Computer Vision

Filtering and Enhancing Images

Chang-Su Kim

Chapter 5, Computer Vision by Shapiro and Stockman
Note: Some figures and contents in the lecture notes of Dr. Stockman are used partly.

Make it better for human or machine vision

(a) original
(b) Laplacian of (a)

(c) $=(a)+(b)$

(e) smoothed (a)
(f) $=(c) \times(e)$

$(\mathrm{g})=(\mathrm{a})+(\mathrm{f})$

(h) power-law transform of (g)

Make it better for human or machine vision

a b c
FIGURE 4.20 (a) Original image (1028×732 pixels). (b) Result of filtering with a GLPF with $D_{0}=100$.
(c) Result of filtering with a GLPF with $D_{0}=80$. Note reduction in skin fine lines in the magnified sections of (b) and (c).

Make it better for human or machine vision

Strong noise

Medium noise

Weak
noise

Image Enhancement and

 Restoration- Enhancement
- Subjective improvement of image quality to increase the detectability of important image details or objects by human or machine
- Restoration
- Object recovery of original image from degraded image
- Knowledge on the image degradation process is required

Pointonerator

- Point processing

$$
g(x, y)=T[f(x, y)]
$$

- Output pixel value depends only on the input pixel value at the same location
- The enhancement system is fully described by

$$
s=T(r)
$$

where $s=g(x, y)$ and $r=f(x, y)$

Point Operator

Point Operator - Gamma Correction

- $s=C r^{\gamma}$

$$
\begin{aligned}
- & c=255^{1-\gamma}: \\
& {[0,255] \rightarrow[0,255] }
\end{aligned}
$$

- $\gamma<1$:
- expand dark levels and compress bright levels
- $\quad \gamma>1$:
- expand bright levels and compress dark levels
- Varying γ controls the amount of expansion and compression

Point Operator - Histogram Equalization

- Histograms are the basis for numerous spatial domain image processing techniques
- Rough estimate of probability distribution of gray levels
- Simple to compute
- Histogram

$$
h\left(r_{k}\right)=n_{k}
$$

- r_{k} : k-th gray level
- n_{k} : the number of pixels in the image having gray level r_{k}
- Normalized histogram

$$
p\left(r_{k}\right)=n_{k} / n
$$

- n : the total number of pixels
$-\sum_{k} p\left(r_{k}\right)=1$

Point Operator

 - Histogram Equalization

- In general, the uniform distribution of gray levels
is desirable
- high contrast
- a great deal of details
- high dynamic range

Point Operator - Histogram Equalization

- Example: An image of 128 pixels. There are 8 gray levels only.
- Note that each gray level should have 16 pixels in the output histogram

r_{k}	0	1	2	3	4	5	6	7
n_{k}	1	7	21	35	35	21	7	1
n_{k}	1	8	29	64	99	120	127	128
$\mathrm{~T}\left(\mathrm{r}_{\mathrm{k}}\right)$	0	0	1	3	6	7	7	7

- Ideally, starting from the smallest gray level,
- the first 16 pixels should be assigned gray level 0
- 32 pixels => gray level 0 or 1
- 48 pixels => gray level 0,1 , or 2
- 64 pixels => gray level $0,1,2,3$
- 80 pixels => gray level $0,1,2,3,4$
- 96 pixels => gray level $0,1,2,3,4,5$
- 112 pixels $=>$ gray level $0,1,2,3,4,5,6$
- 128 pixels => gray level $0,1,2,3,4,5,6,7$
($0,1=>0$)
$(0,1,2=>0,1)$
Skip
$(0,1,2,3=>0,1,2,3)$
Skip
Skip
$(0,1,2,3,4=>0,1,2,3,4,5,6)$
$(0,1,2,3,4,5,6,7=>0,1,2,3,4,5,6,7)$

Point Operator - Histogram Equalization

- Example: An image of 128 pixels. There are 8 gray levels only.
- Note that each gray level should have 16 pixels in the output histogram
- More sophisticated equalization

r_{k}	0	1	2	3	4	5	6	7
n_{k}	1	7	21	35	35	21	7	1
$\sum n_{k}$	1	8	29	64	99	120	127	128
$T\left(r_{k}\right)$	0	0						

0	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2		
2	2	2	2	2	2	2	2	2	2	2	2	2	3	3	3		
3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3		
3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3		
4	\rightarrow	0															
4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4		
4	\rightarrow	2															
4	4	4	4	4	4	4	4	4	4	4	4	4	4	4			
4	\rightarrow	4															
4	4	5	5	5	5	5	5	5	5	5	5	5	5	5			
5	5	5	5	5	5	5	5	6	6	6	6	6	6	6	7	\rightarrow	6
:---:																	

Fig. 2. SHE and SHS: (a) original image, (b) output of SHE, and (c) output of SHS. (d), (e), and (f) are the histograms of (a), (b), and (c), respectively.

Fig. 3. (a) Original image, (b) output of SHE, and (c) output of SHE + POCS. (d), (e), and (f) are enlarged parts of (a), (b), and (c), respectively.

(a)

(e)

(b)

(f)

(c)

(g)

(d)

(h)

Fig. 4. Comparison of the proposed algorithm with the conventional histogram equalization method in [1]: (a) the original image SANTA, (b) the conventional histogram equalization method, (c) the proposed SHE + POCS algorithm, and (d) the proposed SHS + POCS algorithm. (e), (f), (g), and (h) are enlarged parts of (a), (b), (c), and (d), respectively.

Removal of Small Image Regions

- Removal of Salt-and-Pepper Noise

Input

8-neighbor decision

X	X	X				
X	L	X				
X	X	X	\Rightarrow	X	X	X
:---:	:---:	:---:				
X	X	X				
X	X	X				

Removal of Small Image Regions

- Removal of Small Components
- Count the number of pixels in a component. If it is less than a threshold, remove the component.
- ex) Threshold 12

Masking (Linear Filtering)

- Mask is moved from pixel to pixel
- At each location, the mask coefficients are multiplied by the corresponding pixel values, and then summed up

$$
\begin{aligned}
g(x, y)= & w(-1,-1) f(x-1, y-1) \\
& +w(-1,0) f(x-1, y)+\ldots \\
& +w(1,1) f(x+1, y+1)
\end{aligned}
$$

Masking with

a	b	c
d	e	f
g	h	i

Convolving with

i	h	g
f	e	d
c	b	a

Masking (Linear Filtering)

Masking with a mask w of size $(2 a+1) \times(2 b+1)$

$$
g(x, y)=\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) f(x+s, y+t)
$$

\square Convolving with a filter h of size $(2 a+1) \times(2 b+1)$

$$
g^{\prime}(x, y)=\sum_{s=-a}^{a} \sum_{t=-b}^{b} h(s, t) f(x-s, y-t)
$$

\square Note that $g(x, y)=g^{\prime}(x, y)$ if $w(s, t)=h(-s,-t)$
For masking, we use the following notation also

$$
R=\sum_{i=1}^{k} w_{i} z_{i}=w_{1} z_{1}+w_{2} z_{2}+\ldots+w_{k} z_{k}
$$

where w_{i} 's are masking coefficients and z_{i} 's are pixel values.

w_{1}	w_{2}	w_{3}
w_{4}	w_{5}	w_{6}
w_{7}	w_{8}	w_{9}

Nasking (tinearfiltering)

Boundary problem

1. Limit the excursion of the center of the mask, so that the mask is fully contained within the image

- Output image is smaller than input image

0	0	0	0	0
0	0	0	0	0
0	0	a	b	c
0	0	d	e	f
0	0	g	h	i

2. Extrapolate the input image sufficiently, so that the mask can be applied near the boundaries also.

- Zero padding
- Repetition
- Mirroring
- etc

a	a	a	b	c
a	a	a	b	c
a	a	a	b	c
d	d	d	e	f
g	g	g	h	i

a	a	d	e	f
a	a	a	b	c
b	a	a	b	c
e	d	d	e	f
h	g	g	h	i

Snnosthing Filters

- Averaging filter (box filter) and weighted averaging filter

- Blends with adjacent pixel values
- Blurring
- Removal of small details before large object extraction
- Bridging of small gaps in lines or curves
- Reduction of sharp transitions in gray levels
- Advantage: noise reduction
- Disadvantage: edge blurring

Smoothing Filters

- Gaussian filter

$$
g(x, y)=c \sum_{s} \sum_{t} w(s, t) f(x+s, y+t)
$$

where

$$
w(s, t)=e^{-\frac{\left(s^{2}+t^{2}\right)}{2 \sigma^{2}}}
$$

Smoothing Filters

- Losing edges
- Reducing noises
- Removing small objects

Smoothing Filters

- Finding objects of interest

a b c
FIGURE 3.36 (a) Image from the Hubble Space Telescope. (b) Image processed by a 15×15 averaging mask. (c) Result of thresholding (b). (Original image courtesy of NASA.)

Order-Statistics Filter

- \quad Sort the gray levels of the neighborhood
- $\quad \underset{\min }{(0,1,2,2,3,4,5,6,6)} \quad$ median \quad max
- Min filter
- Replace the center pixel with the minimum gray level (0)
- Max filter
- Replace the center pixel with the maximum gray level (6)
- Median filter

6	4	6
2	1	3
2	5	0

- Replace the center pixel with the median (3)
- Excellent suppression of salt-and-pepper noises without blurring

Deraining

Video Deraining and Desnowing

Edge Detection Using Difference Masks

- Finding the image points of high contrast

Edge Detection Using Difference Masks

- Difference masks
- cf. Sum masks for smoothing
- Derivative in digital domain
- $1^{\text {st }}$-order derivative (1D case)

$$
\frac{\partial f}{\partial x}=f(x)-f(x-1)
$$

- $2^{\text {nd-order derivative }}$

$$
\frac{\partial^{2} f}{\partial x^{2}}=f(x+1)-f(x)-[f(x)-f(x-1)]=f(x+1)-2 f(x)+f(x-1)
$$

Edge Detection Using Difference Masks

Masks

Second derivative $\mathbf{S "}^{\prime \prime}=$

$\mathbf{M}^{\prime \prime}=$| $+\mathbf{1}$ | $-\mathbf{2}$ | $+\mathbf{1}$ |
| :--- | :--- | :--- |

$S[i+1]-2 S[i]+S[i-1]$

Mask $[-1,0,1]$ for $1^{\text {st }}$ Derivative

S_{1}			12	12	12	12	12	24	24	24	24	24
S_{1}	\otimes	M	0	0	0	0	12	12	0	0	0	0

(a) S_{1} is an upward step edge

S_{2}			24	24	24	24	24	12	12	12	12	12
S_{2}	\otimes	M	0	0	0	0	-12	-12	0	0	0	0

(b) S_{2} is a downward step edge

Double responses at the transition

Mask $[-1,0,1]$ for $1^{\text {st }}$ Derivative

S_{3}			12	12	12	12	15	18	21	24	24	24
S_{3}	\otimes	M	0	0	0	3	6	6	6	3	0	0

(c) S_{3} is an upward ramp

S_{4}			12	12	12	12	24	12	12	12	12	12
S_{4}	\otimes	M	0	0	0	12	0	-12	0	0	0	0

(d) S_{4} is a bright impulse or "line"

An impulse signal generates an "up-and-down" response

Mask [-1, 2, -1] for $2^{\text {nd }}$ Derivative

S_{1}			12	12	12	12	12	24	24	24	24	24
S_{1}	\otimes	M	0	0	0	0	-12	12	0	0	0	0

(a) S_{1} is an upward step edge

S_{2}			24	24	24	24	24	12	12	12	12	12
S_{2}	\otimes	M	0	0	0	0	12	-12	0	0	0	0

(b) S_{2} is a downward step edge
"Up-and-down" responses at edges

Mask [-1, 2, -1] for $2^{\text {nd }}$ Derivative

S_{3}			12	12	12	12	15	18	21	24	24	24
S_{3}	\otimes	M	0	0	0	-3	0	0	0	3	0	0

(c) S_{3} is an upward ramp

S_{4}			12	12	12	12	24	12	12	12	12	12
S_{4}	\otimes	M	0	0	0	-12	24	-12	0	0	0	0

(d) S_{4} is a bright impulse or "line"

A ramp edge generates zero responses except at the starting and ending points.

Difference Masks for 2D Images

- Gradient

$$
\nabla f(x, y)=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)
$$

- The maximum change occurs along the direction of gradient

Difference Masks for 2D Images

- Prewitt Masks

$\frac{\partial f}{\partial x}$| -1 | 0 | 1 |
| :---: | :---: | :---: |
| -1 | 0 | 1 |
| -1 | 0 | 1 |$\quad \frac{\partial f}{\partial y}$| 1 | 1 | 1 |
| :---: | :---: | :---: |
| 0 | 0 | 0 |
| -1 | -1 | -1 |

- In this example,
$f_{x}=\frac{\partial f}{\partial x}=107$
$f_{y}=\frac{\partial f}{\partial y}=100$
Magitude of gradient $|\nabla f|=146.4$
Angle of gradient $\theta=\tan ^{-1}(100 / 107)=43.1^{\circ}$

Difference Masks for 2D Images

- Sobel Masks

$\frac{\partial f}{\partial x}$| -1 | 0 | 1 |
| :---: | :---: | :---: |
| -2 | 0 | 2 |
| -1 | 0 | 1 |

$\frac{\partial f}{\partial y}$| 1 | 2 | 1 |
| :---: | :---: | :---: |
| 0 | 0 | 0 |
| -1 | -2 | -1 |

- For computational efficiency, the magnitude of gradient is sometimes approximated by

$$
\begin{aligned}
|\nabla f| & =\sqrt{\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}} \\
& \cong\left|\frac{\partial f}{\partial x}\right|+\left|\frac{\partial f}{\partial y}\right|
\end{aligned}
$$

Examples of Gradient Images

(a)

(d) Gradient image

(e)

(f)

$$
=\left|f_{x}\right|+\left|f_{y}\right|
$$

Examples of Gradient Images

Input image
Gradient image

a b

FIGURE 3.45
Optical image of contact lens (note defects on the boundary at 4 and
5 o'clock).
(b) Sobel
gradient.
(Original image
courtesy of
Mr. Pete Sites,
Perceptics
Corporation.)

