Dynamic Programming

0/1 Knapsack Problem

0/1 Knapsack Problem

- Item i has a value (or profit) p_{i}.
- All weights and values are positive numbers.
- Hiker wants to select a subset of the n items such that
- The weight of the subset should not exceed the capacity of the knapsack. (constraint)
- Cannot select a fraction of an item. (constraint)
- The value of the selected subset should be maximum. (optimization criterion)

0/1 Knapsack Problem

Let $\mathrm{x}_{\mathrm{i}}=1$ when item i is selected and let $\mathrm{x}_{\mathrm{i}}=0$ when item i is not selected.
$\operatorname{maximize} \sum_{i=1}^{n} p_{i} x_{i}$
subject to $\sum_{i=1}^{n} w_{i} \mathrm{X}_{\mathrm{i}}<=\mathrm{c}$ and $\mathrm{x}_{\mathrm{i}}=0$ or 1 for all i

Greedy Method 1

Be greedy on capacity utilization.

- Select items in increasing order of weight.
$\mathrm{n}=2, \mathrm{c}=7$
$\mathrm{w}=[3,6]$
$\mathrm{p}=[2,10]$
only item 1 is selected
the value of selection is 2
not best selection!

Greedy Method 2

Be greedy on the value earned.

- Select items in the decreasing order of values
$\mathrm{n}=3, \mathrm{c}=7$
$\mathrm{w}=[7,3,2]$
$p=[10,8,6]$
only item 1 is selected
the value of selection is 10
not best selection!

Greedy Method 3

Be greedy on value density (p / w).

- Select items in decreasing order of value density.
$\mathrm{n}=2, \mathrm{c}=7$
$\mathrm{w}=[1,7]$
$\mathrm{p}=[10,20]$
only item 1 is selected
the value of selection is 10
not best selection!

