Digital Signal Processing

Chap 2.
Discrete-Time Signals and Systems

Chang-Su Kim



Discrete-Time Signals
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Representation

* Functional representation

(1, n=13
x[n] =<4, n=2
0, otherwise

« Tabular representation

nl. 01234 5]
xn] .. 0 1 4 1 0 0 0
* Sequence representation

x[n] = {...,0,0,1,4,1,0,0, ...}
A



Elementary Sequences

* Unit sample sequence (impulse
function, delta function)

0,0 n#0
S[n]:{l n=20

* Unit step sequence

1, n=0
uln] =10" 1, 20

* Exponential sequence
x[n] = Aa™

» Sinusoidal sequence
x[n] = Acos(wgn + @)




Properties of Impulse and Step

Functions

1)

o[n]=u[n]-u[n-1]

2)

unl=Y 5[] = ié[n K]

3)

X[n]S[n] = X[0]5[n]

4)

x[n]o[n - no] = x[no]é[n - no]

0)

o0

x[n]= 3" x[k]s[n—k]

K=—00
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Properties of Exponential and
Sinusoidal Sequences

« Exponential xnj=a"

[ ]

=g

=r"(cosaw,n + jsina,n)

[ ——

Figure 2.1.5 Graphical representation of exponential signals.



Properties of e/®0™ and cos(wqn)
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Discrete-Time Systems

— 7|} >
x|n] yln]

yln] = Tix[n]}

* Examples
1. ldeal delay yln] = x[n — 2]
2. Moving average

yln] = %(x[n — 1] + x|n] + x[n + 1])



Memoryless Systems

Memoryless Systems: The output y[n] at any instance n depends
only on the input value at the current time n, Le. y[n] is a function of

x|n|

Systems with Memory: The output y[n] at an instance n depends on
the input values at past and/or future time instances as well as the

current time instance

Examples:
— A resistor: y[n] = R x[n]
— A unit delay system: y[n] = x[n —1]

— An accumulator:



Proving or Disproving Mathematical
Statement

* For a system to possess a given property, the
property must hold for every possible input
signal to the system

* A counter example is sufficient to prove
that a system does not possess a property

* To prove that the system has the property, we
must prove that the property holds for
every possible input signal



Linear Systems

« Asystem is linear if it satisfies two properties.
— Additivity: x1[n] + x,[n] = y,[n] + y,[n]
— Homogeneity: cxq[n] = cy;[n]

* The two properties can be combined into a single
property (linearity).

a;x1[n] + axx;[n] = a;y,[n] + ayy,[n]

* Examples
— y[n] = x*[n]
— y[n] =log|x[n]|
— y[n] = 2x[n] + 3
— yln] = Xk=—0 x[K]




Time-Invariant Systems

« A system is time-invariant if a delay (or a time-shift) in

the input signal causes the same amount of delay in the
output.

x[n —ng] = y[n —ne]

« Examples:
— yln] = x?[n]
— yIn] = sin|x[n]|
— yln] = x[2n]
— yln] = Xk-—w x[k]




Causal Systems

 Causality: A system is causal if the output at any time
Instance depends only on the input values at the current
and/or past time instances.

« Examples:
— yIn] = x[n] — x[n — 1]
— yIn] = x[n + 1]

* A memoryless system is always causal.



Stable Systems

Stability: A system is stable if a bounded input yields a
bounded output (BIBO).

— In other words, if |x[n]| < k,then |y[n]| < k,.

Examples:

— yln] = x?[n]

— yIn] = sin|x[n]|
— yln] = x[2n]

= yInl = Xy=—c x[k]




Linear Time-Invariant Systems
and Their Properties



Divide and Conquer

 Divide an input signal into a sum of shifted scaled versions of
an elementary signal

 |If you know the system output in response to the elementary
signal, you also know the output in response to the input

signal

Ex) An LTI system processes x,[n] to make y,[n]. The same
system processes another input x,[n] to make y,[n]. Plot y,[n].




Representing Signals in Terms of Impulses

« Sifting property

o0

x[n]= > x[k]s[n—k]

K=

+X
+X
+X
+X
+X

—00

—2]o[n+ 2]
—1]o[n+1]
0]o[n]
1]o[n—1]

2]0[n—2]

[n]
. 1

0
|

! )f[—2]5[n + 2]

+
x[-115[n+1]

=
I x[0)5n]

+
! >§[1]5 [n—1]

+
] x[2]6[n-2]




Impulse Response

* The response of a system H to the unit impulse
o[n] is called the impulse response, which is
denoted by h[n]

— hin] = H{d[n]}

o[n] h|n|

>




Convolution Sum

* Let h[n] be the impulse response of an LTI system.

« Given h[n], we can compute the response y[n] of the
system to any input signal x[n].

x[n] y[n]

Definit v o o A
erniton —_— i
J_L!_q

o T e — 0

n

Shift invariance ‘ —» DT LT] —m—- ‘I

n

Scalmg — DT LTl b— ‘l
Superposition o141 ‘1 « — DT LTI —I-J_LJ_L_HTW




x3[n] = x[3]8[n - 3] y3[n] = x[3]h[n - 3]

3) 3 5
0 ‘ n 0 ‘||n

x[n] = x[n] + xo[n] + x3[n] ylnl = yoln] + yoln] + y3(n]




Convolution Sum

* Let h[n] be the impulse response of an LTI system.

« Given h[n], we can compute the response y[n] of the
system to any input signal x[n].

yln]

DT LTI

—» [1[n]

DT LTI

— i[n — m]

x[n]
Definition &[n] ——»
Shift invariance 6[n — m]——»
Scaling x[m]é[n—m] ——m

DT LTI

—— 1z [m]h[n—m)]

Superposition ) " x[m]6[n—m] —m
i

DT LTI

—— ) z[m]h[n—m]
L




Convolution Sum

* Let h[n] be the impulse response of an LTI system.
« Given h[n], we can compute the response y[n] of the

system to any input signal x[n].

xin]= 3" x[k]oTn K] yInl=H :_X[:]]

= =H| > x[k]o[n- k]}

| k=

= 3" H [XK]S[n —K]]

k=—o0

= 3" X[KIH [6[n —K]]

- i X[KIn[n — K]

K=—c0




Convolution Sum

 Notation for convolution sum

0 0]

y[n]=x[n]*h[n] = > x[k]h[n —K]

k=—00

« The characteristic of an LTI system is completely
determined by its impulse response.

o[n

x[n



Convolution Sum

* To compute the convolution sum

o0

y[n]=x[n]*h[n] = > x[k]h[n K]

K =—00

Step 1 Plot x and h vs k since the convolution sum is on k.
Step 2 Flip h[k] around the vertical axis to obtain h[—k].

Step 3 Shift h[—k] by n to obtain h[n — k].
Step 4 Multiply to obtain x[k]h[n — k].

Step 5 Sum on k to compute ), x[k]h[n — k].
Step 6 Change n and repeat Steps 3-6.



Example

Consider an LTl system that has an

impulse response h[n] = u[n] 19
What is the response when an input . I :
signal is given by X '
x[n] = a™u[n] 05 I
Ll
e
For n>0, n N
y[nl=> a 15
k=0
_1_an+l 1 IR NNNYY )
-« z
0.5¢
Therefore,
N+l o S S
y[n]:(l_a ju[n] R A
l-a n



Example

Consider an LTI system that has an

Impulse response
h[n] = u[n] —u[n — N]

What is the response when an input
signal is given by

x[n] = a"u[n]
where 0 <a <17



Properties of Convolution

* ldentity property
x|n] * §[n] = x[n]

 Shifting property
x|n] *o6ln — k| = x|n — kj



Properties of Convolution

« Commutative property

x(n)

x|n] * h|n] = h|n] * x|n]

y(n) h(n)

— () - <> — x(n)

y(n)

Figure 2.3.4 Interpretation of the commutative property of convolution.

Y



Properties of Convolution

» Associative property

x[n] * hy[n]} * hy[n] = x[n] = {hy[n] = hy[n]}

h(n) =

hi(n) * hy(n)

x(n) y(n) x(n)
— ) | ) e <>
(a)
(n) ((n)
ﬂ"’ hy(n) > hy(n) ﬂ"" <:> i"" hy(n)

(b)

y(n)

hy(n)

y(n)

Figure 2.3.5 Implications of the associative (a) and the associative and
commutative (b) properties of convolution.



Properties of Convolution

* Distributive property
x|n] * [hy[n] + hy[n]] = x[n] * hy[n] + x[n] * hy[n]

——| h{(n)

x(n) y(n) x(n) h(n) = y(n)
®_> <:> — | hn)+h(n) [
= hy(n) 4+

Figure 2.3.6 Interpretation of the distributive property of convolution: two LTI
systems connected in parallel can be replaced by a single system with
h(n) = hi(n) + hy(n).



Causality of LTI Systems

« A system is causal if its output depends only on the past
and present values of the input signal.

« Consider the following for a causal LTI system:

o0

y[n]= > x[kIh[n-K]

k=—00

— Because of causality h[n-k] must be zero for k > n.
— In other words, h[n] = 0 forn < 0.



Causality of LTI Systems

So the convolution sum for a causal LTl system becomes

n o0

y[n] = Z X[k]h[n—K] = Zh[k]x[n — k]

k=—00 k=0

So, if a given system is causal, one can infer that its
iImpulse response is zero for negative time values, and
use the above simpler convolution formulas.



Stability of LTI Systems

« A system is stable if a bounded input yields a bounded

output (BIBO). In other words, if |x[n]| < M, then
[y[n]l < M,.

 Note that
ly[n]|=

o0

3" x[n—k]h[k]

K=—o0

<3 [xIn—k]|hik] < M, 3 |hK]

k:—w k:—OO

* Therefore, a system is stable if

> |hik] <=



Examples

System Impulse response | Causal m

yln] = x[n — ny4]

1
yinl = M1+M2+12 x[n = k]

k=—M,
ylnl = > x[k]

k=—o0

y[n] = x[n + 1] — x[n]

y[n] = x[n] — x[n - 1]



—
x|[n]

—
x|[n]

Forward
difference

One-sample
delay

(a)

One-sample Forward

delay

difference

(b)

x|[n]

Backward
difference

y[n]

(c)

y[n]

y[n]

Examples

Accumulator
system

Backward-
difference
system




Constant-Coefficient
Difference Equations (CCDE)



Discrete-Time Systems

* Block diagram representation
_ - _ constant

e e e e e e e e e 2 O e e -
1 / . .
— 05 multiplier adder .
z N 7 .
x(n) N _,’ * / v u’n_lt delay
z: \ @ 1/ ! \ "
.;5 A \ / ! z_l !
- ‘%’ 023\ | L/
(a)
Black box
! -1
| Z —*
x(n) 5 0.5 N
i Q Y | g
| A 7!
' 025 L
(b)

Figure 2.2.7 Block diagram realizations of the system
y(n) =025y(n — 1) +0.5x(n) + 0.5x(n — 1).



Recursive Systems

* |f an impulse response has a finite duration, the
system is an FIR system. Otherwise, an IIR system.

* An FIR system can be implemented directly using
a finite number of adders, multipliers and delays.

— e.g.) Implement the system with h[n] 4

—_\
w pP—e_.

o



Recursive Systems

« Can you directly implement the cumulative averaging
system?

1 n
y(n) = me:(;X(k), n= 0,1,...

|t can be implemented in a recursive manner with a
feedback loop

— Past output values are used to compute a current output value

x(n) y(n)

—_—— +

Figure 2.4.1 Realization of a recursive cumulative averaging system.

A




Constant-Coefficient Difference
Equations (CCDE)

> a,y[n-kI= bx[n-k]

« The equation defines a recursive system, which
processes an input x[n] to make the output y[n]

* N is the order of the equation or the
corresponding system



Constant-Coefficient Difference
Equations (CCDE)

> a,y[n-kI=Y bx[n-k]

« Example 1: Accumulator y[n] = X1 __ x[k]

—( + ) 2
x[n] “/ y|[n]
Y

e-sa
delay




Constant-Coefficient Difference
Equations (CCDE)

> a,y[n-kI=Y bx[n-k]

e Example 1: MA System y|n] = - fﬁox[n — k]

M,+1
Attenuator "
— 1 Y g ACL‘lll‘nl‘J]alOr
x[n] (M, +1) N7 x[n] system y[n]
(M, +1)
> sample
delay




Constant-Coefficient Difference
Equations (CCDE)

> a,y[n-kI=Y bx[n-k]

« Suppose that x[n] is given, and we want to get
y[n] for n = 0. Which information do we need
further?




Constant-Coefficient Difference
Equations (CCDE)

> a,y[n-kI=Y bx[n-k]

* Initial rest condition

« If x[n] starts at n = n,, i.e., x[n] = 0 when n < n,, then
y[n] = 0 when n < n,,.

 Alternatively, the initial values are

y[ng—1] =y[ny,—-2] =+ =y[ny—N|]=0.

 |f we assume the initial rest condition, then the system

described by the equation is LTI.



Constant-Coefficient Difference
Equations (CCDE)

* More details will be studied later, especially in
Chap 6.



Frequency Domain
Representation of Discrete-
Time Signals and Systems



Eigenfunctions for LTI Systems

o[n] hin]
ejon H(eja))e]a)n

« e/“mjs an eigenfunction of LTI systems

* Its eigenvalue is given by the Fourier transform of

iImpulse response, H(e’*), which is called frequency
response

H(e/?) = z hl[k]e J@k

k=—o0



Eigenfunctions for LTI Systems

x[n) B yln
= z g e]wkn z A H(e]wk)e]wkn
k



Frequency Response

« Ex) Determine the output sequence of the system with

iImpulse response

hin]| = %u[n]

when the input is a complex exponential

_ Ao
x|n] = Ae’2



Frequency Response

* Ex) Determine the magnitude and phase of H(e/®) for
the three-point moving average (MA) system

y[n] = %{x[n + 1] + x[n] + x[n — 1]}.

-7 —/2 0 /2 b

w
T T
= T2
=
&
= 0
)
@ 2
_TE 1 1 1
- —T/2 0 /2 T
®
Figure 5.1.1 Magnitude and phase responses for the MA system in

Example 5.1.2.



Sinusoidal Input

* Assuming that h[n] is real, we have the
Input-output relationship

Acos(wgn + ¢) ’.— A|H(e/®0)|cos(won + ¢ + 6(wy))

H(e) = (eIl

1. The amplitude is multiplied by |H(e/®)|

2. The output has a phase lag relative to the
input by an amount 8(w) = £H(e’?)



|deal Filters

Hip(e™®) Hyg(e™)
1 e 1
| | | | |
27 2wm+w, - -, , T 27 -w, 2w w —ar —w, 0
(a) (a)
H, (el® :
(") His(e )
1
1
| |
- o, , T w |
(b) - —wp W, 0 w,
(b)

H(eja)) — H(ej(w+2nr)) Hiple®)

(c)



Representation of Sequences
by Fourier Transforms



Discrete-Time Fourier Transform

1 o
X[n]=— | X(e')e’"d
[n] zﬂ!ﬂ (e“)el"dw

o0

X(©'”)= > x[nJe”’"

N=—0c0

 DTFT can be derived from DTFS (discrete-time
Fourier series)

* Frequency response is the DTFT of impulse response

- The existence of X(e/®)

— A sufficient condition: x[n] is absolutely summable

— We avoid rigorous conditions/proofs and use well-known
Fourier transform pairs




Fourier Transform

TABLE 2.3 FOURIER TRANSFORM PAIRS

Sequence Fourier Transform
1. 8[n] 1
2. 8[n — ngl e—J@no
o0
3.1 (—00 < n < 00) Z 27 8(w + 27k)
k=—o00
1

4. a"uln] (la] = 1)

1 — ae—i®
{
- (’_-i“’

1

(1 —ae—J®)2

n

-
. u[n] + Z 78(w+27k)
k

(=—00

6. (n+1a"uln] (lal < 1)

" sinw,(n+ 1) , 1
7. ————2— = uln] (r] <1) ‘ —
sinwp 1 —2r coswpe=J® +ree=Jo@
. sinwen jon 1, |o| < we,
5 n X (™) = 0, we <|w| =7
1, O=n=M sinfo(M + 1)/2] _; m/
9. x[n] = = = [ - / ](’ JoM{2
0, otherwise sin(w/2)
o0
10. eJ@on Y 2n8(w — wq +27k)
k=—00
11. cos(wqgn + ¢) Z [me!?8(w — wq + 27k) + e 18w + wq + 2mk)]

k=—00

Pairs



Symmetry Property

TABLE2.1 SYMMETRY PROPERTIES OF THE FOURIER TRANSFORM
Sequence Fourier Transform
x[n] X (/)
1. x*[n] X*(g=it)
2. x*[-n] X*(e/®)
3. Re{x[n]} X e(e!®) (conjugate-symmetric part of X (e/?))
4. jZmix[n]} X ,(e/®) (conjugate-antisymmetric part of X (¢/¢))

N

xe[n]  (conjugate-symmetric part of x[n])

. xp[n] (conjugate-antisymmetric part of x[n])

XR((’jw) = Re{X ((’jw)}

iX1(el®) = jTm{X (e/®)}

The following properties apply only when x[n] is real:

. Any real x[n]

Any real x[n]

. Any real x[n]
. Any real x[n]
. Any real x[n]
. x¢[n] (even part of x[n])

. xo[n] (odd part of x[n])

X (/) = X*(e=/) (Fourier transform is conjugate symmetric)
XR(ej“’) = XR(e_j“’) (real part is even)

X7(e/®) = —X1(e77®) (imaginary part is odd)

|X (e/?)| = |X (e=/®)| (magnitude is even)

[X (e!?)y=—/X (¢77®) (phase is odd)

Xp(el®)

le((,j(o)




Symmetry Property

5
4l
3
3 3t
gl
T AL S
0 | I !
R _m 0 T &
2 2
Radian frequency (@)
(a)
2
[}
o QL
2 T~
20
< N
5l 5
) 1 I I
- ™ 0 s ™
2 2
Radian frequency (@)
(b)
(]
g
f‘—
<
0 I I I
- ™ ™ ™
-5 0 5
Radian frequency (w)
(c)
1.0
z 0.5
= & s
g 0
9 N
2051 N2
a -1.0 L L L
- _qT 0 T T
2 2

Radian frequency (@)

(d)

Figure 2.22 Frequency response for a system with impulse response h[n] = a"u[n].
a>0;a=0.75 (solid curve) and a = 0.5 (dashed curve). (a) Real part. (b) Imaginary
part. (c) Magnitude. (d) Phase.



Fourier Transform Theorems

TABLE2.2 FOURIER TRANSFORM THEOREMS

Sequence Fourier Transform
x[n] X (e/®)
yln] Y (e/?)
1. ax[n] + by[n] aX (e/?) + bY(e?)
2. x[n —ny] (ng aninteger) e—IPNd X (e®)
3. el®0x[n] X (el (@—@0))
4. x[-n] X (e779)
X*(e/?) if x[n] real.
1X (e/®)
5. nx[n] arley
dw
6. x[n] * y[n] X (e/?)Y (el®)
O O N (T |
7. x[n]y[n] — X(e'")Y(e )do
P o) S

Parseval’s theorem:
o0 1 = ‘
8. Z Ix[n]]% = f 1X (e79)|2de
25 i
n=—oQ g
o0 s

Q L X ')_j(t’)y* ,jw”
Z n]\ [n] = 3 /_ (¢ (¢ aw

n=—00 2




Convolution Theorem

* y[n] =x|n] *h|n] = Y(efw) = X(ej“’)H(ejw)



Convolution Theorem: Another Perspective

x|n] . yln]
= Zcxk el Wk = zak H (e “k)el k™
k K

x|n] y[n]

. . 1 . . .
X(e/?)e/“"dw — | X(e/®)H(e/®)e/“"dw

27T - 27T -



Examples

 x[n] = a™u[n — 5]. What is X(e/®)?



Examples

1
(1—ae~J®)(1—-ae~J®)

. X(ej“)) = . What is x|n]?



Examples

1
(1—ae~J®)(1—-be~J®)

. X(ej“)) = .What is x|n]?



Examples

« Determine the impulse response h|n] of a
highpass filter with frequency response

( )
e /M . < |w| <,

jo) =
H(e ) | 0, lw| < w,.

\



Examples

« Determine the frequency response and the impulse
response of a system described by a CCDE

1 1
yIn] =5yl — 1] = x[n] - 7x[n — 1]



