
Digital Signal Processing

Chap 2. 

Discrete-Time Signals and Systems

Chang-Su Kim



Discrete-Time Signals
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Representation

• Functional representation

• Tabular representation

• Sequence representation
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Elementary Sequences
• Unit sample sequence (impulse 

function, delta function)

𝛿 𝑛 = ቊ
0, 𝑛 ≠ 0
1, 𝑛 = 0

• Unit step sequence 

𝑢 𝑛 = ቊ
1, 𝑛 ≥ 0
0, 𝑛 < 0

• Exponential sequence

𝑥 𝑛 = 𝐴𝛼𝑛

• Sinusoidal sequence

𝑥 𝑛 = 𝐴 cos(𝜔0𝑛 + 𝜙)



Properties of Impulse and Step 

Functions
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Properties of Exponential and 

Sinusoidal Sequences

• Exponential
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Properties of 𝑒𝑗𝜔0𝑛 and cos(𝜔0𝑛)

• 𝜔0 + 2𝜋 = 𝜔0

• They are periodic 

only if 𝜔0𝑁 = 2𝜋𝑘

cf) Note the differences 

from the CT case



Discrete-Time Systems

𝑦 𝑛 = 𝑇 𝑥 𝑛

• Examples

1. Ideal delay 𝑦 𝑛 = 𝑥[𝑛 − 2]

2. Moving average 

𝑦 𝑛 =
1

3
(𝑥 𝑛 − 1 + 𝑥 𝑛 + 𝑥[𝑛 + 1])



Memoryless Systems

• Memoryless Systems: The output 𝑦[𝑛] at any instance 𝑛 depends 
only on the input value at the current time 𝑛, i.e. 𝑦[𝑛] is a function of 
𝑥[𝑛]

• Systems with Memory: The output 𝑦[𝑛] at an instance 𝑛 depends on 
the input values at past and/or future time instances as well as the 
current time instance

• Examples:

– A resistor: 𝑦[𝑛] = 𝑅 𝑥[𝑛]

– A unit delay system: 𝑦[𝑛] = 𝑥[𝑛 − 1]

– An accumulator: 

𝑦 𝑛 = ෍

𝑘=−∞

𝑛

𝑥[𝑘]



• For a system to possess a given property, the 
property must hold for every possible input 
signal to the system

• A counter example is sufficient to prove 
that a system does not possess a property

• To prove that the system has the property, we 
must prove that the property holds for 
every possible input signal

Proving or Disproving Mathematical 

Statement



Linear Systems

• A system is linear if it satisfies two properties.

– Additivity: 𝑥1 𝑛 + 𝑥2 𝑛 ⇒ 𝑦1[𝑛] + 𝑦2[𝑛]

– Homogeneity: 𝑐𝑥1 𝑛 ⇒ 𝑐𝑦1[𝑛]

• The two properties can be combined into a single 

property (linearity).
𝑎1𝑥1 𝑛 + 𝑎2𝑥2 𝑛 ⇒ 𝑎1 𝑦1[𝑛] + 𝑎2𝑦2[𝑛]

• Examples

– 𝑦 𝑛 = 𝑥2 𝑛

– 𝑦 𝑛 = log |𝑥 𝑛 |

– 𝑦 𝑛 = 2𝑥 𝑛 + 3

– 𝑦 𝑛 = σ𝑘=−∞
𝑛 𝑥[𝑘]



Time-Invariant Systems

• A system is time-invariant if a delay (or a time-shift) in 

the input signal causes the same amount of delay in the 

output.

𝑥 𝑛 − 𝑛0 ⇒ 𝑦[𝑛 − 𝑛0]

• Examples:

– 𝑦 𝑛 = 𝑥2 𝑛

– 𝑦 𝑛 = sin |𝑥 𝑛 |

– 𝑦 𝑛 = 𝑥 2𝑛

– 𝑦 𝑛 = σ𝑘=−∞
𝑛 𝑥[𝑘]



Causal Systems

• Causality: A system is causal if the output at any time 

instance depends only on the input values at the current 

and/or past time instances.

• Examples: 

– 𝑦[𝑛] = 𝑥[𝑛] − 𝑥[𝑛 − 1]

– 𝑦 𝑛 = 𝑥 𝑛 + 1

• A memoryless system is always causal.



Stable Systems

• Stability: A system is stable if a bounded input yields a 

bounded output (BIBO).

– In other words, if |𝑥[𝑛]| < 𝑘1 then |𝑦[𝑛]| < 𝑘2.

• Examples:

– 𝑦 𝑛 = 𝑥2 𝑛

– 𝑦 𝑛 = sin |𝑥 𝑛 |

– 𝑦 𝑛 = 𝑥 2𝑛

– 𝑦 𝑛 = σ𝑘=−∞
𝑛 𝑥[𝑘]



Linear Time-Invariant Systems

and Their Properties



Divide and Conquer

• Divide an input signal into a sum of shifted scaled versions of 
an elementary signal

• If you know the system output in response to the elementary 
signal, you also know the output in response to the input 
signal

Ex) An LTI system processes 𝑥1[𝑛] to make 𝑦1[𝑛]. The same 
system processes another input 𝑥2[𝑛] to make 𝑦2[𝑛]. Plot 𝑦2[𝑛].



Representing Signals in Terms of Impulses

• Sifting property
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Impulse Response

• The response of a system 𝐻 to the unit impulse 

[𝑛] is called the impulse response, which is 

denoted by ℎ[𝑛]

– ℎ[𝑛] = 𝐻{[𝑛]}

System
𝐻

[𝑛] ℎ[𝑛]



Convolution Sum

• Let ℎ[𝑛] be the impulse response of an LTI system.

• Given ℎ[𝑛], we can compute the response 𝑦[𝑛] of the 

system to any input signal 𝑥[𝑛]. 

[𝑛] ℎ[𝑛]





Convolution Sum

• Let ℎ[𝑛] be the impulse response of an LTI system.

• Given ℎ[𝑛], we can compute the response 𝑦[𝑛] of the 

system to any input signal 𝑥[𝑛]. 



Convolution Sum

• Let ℎ[𝑛] be the impulse response of an LTI system.

• Given ℎ[𝑛], we can compute the response 𝑦[𝑛] of the 

system to any input signal 𝑥[𝑛].
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Convolution Sum

• Notation for convolution sum

• The characteristic of an LTI system is completely 
determined by its impulse response.

LTI
system

[𝑛] ℎ[𝑛]

𝑥[𝑛] 𝑥[𝑛] ∗ ℎ[𝑛]
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Convolution Sum

• To compute the convolution sum

Step 1  Plot 𝑥 and ℎ vs 𝑘 since the convolution sum is on 𝑘.

Step 2  Flip ℎ[𝑘] around the vertical axis to obtain ℎ[−𝑘].

Step 3  Shift ℎ[−𝑘] by 𝑛 to obtain ℎ[𝑛 − 𝑘].

Step 4  Multiply to obtain 𝑥[𝑘]ℎ[𝑛 − 𝑘].

Step 5  Sum on 𝑘 to compute σ 𝑥[𝑘]ℎ[𝑛 − 𝑘].

Step 6  Change 𝑛 and repeat Steps 3-6.
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Example
• Consider an LTI system that has an 

impulse response ℎ[𝑛] = 𝑢[𝑛]

• What is the response when an input 

signal is given by 

𝑥[𝑛] = 𝑎𝑛𝑢[𝑛]

where 0 < 𝑎 < 1?

• For 𝑛0,

• Therefore, 
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Example
• Consider an LTI system that has an 

impulse response 

ℎ[𝑛] = 𝑢[𝑛] − 𝑢[𝑛 − 𝑁]

• What is the response when an input 

signal is given by 

𝑥[𝑛] = 𝑎𝑛𝑢[𝑛]

where 0 < 𝑎 < 1?



Properties of Convolution

• Identity property

𝑥[𝑛] ∗ 𝛿[𝑛] = 𝑥[𝑛]

• Shifting property

𝑥[𝑛] ∗ 𝛿[𝑛 − 𝑘] = 𝑥[𝑛 − 𝑘]



Properties of Convolution

• Commutative property

𝑥[𝑛] ∗ ℎ[𝑛] = ℎ[𝑛] ∗ 𝑥[𝑛]



Properties of Convolution

• Associative property
{𝑥[𝑛] ∗ ℎ1[𝑛]} ∗ ℎ2[𝑛] = 𝑥[𝑛] ∗ {ℎ1[𝑛] ∗ ℎ2[𝑛]}



Properties of Convolution

• Distributive property
𝑥[𝑛] ∗ [ℎ1[𝑛] + ℎ2[𝑛]] = 𝑥[𝑛] ∗ ℎ1[𝑛] + 𝑥[𝑛] ∗ ℎ2[𝑛]



Causality of LTI Systems

• A system is causal if its output depends only on the past 

and present values of the input signal.

• Consider the following for a causal LTI system:

– Because of causality h[n-k] must be zero for 𝑘 > 𝑛.

– In other words, ℎ[𝑛] = 0 for 𝑛 < 0.
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Causality of LTI Systems 

• So the convolution sum for a causal LTI system becomes

• So, if a given system is causal, one can infer that its 

impulse response is zero for negative time values, and 

use the above simpler convolution formulas.
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Stability of LTI Systems

• A system is stable if a bounded input yields a bounded 

output (BIBO). In other words, if |𝑥[𝑛]| < 𝑀𝑥 then 

|𝑦[𝑛]| < 𝑀𝑦.

• Note that

• Therefore, a system is stable if
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Examples

System Impulse response Causal Stable

𝑦 𝑛 = 𝑥[𝑛 − 𝑛𝑑]

𝑦 𝑛 =
1

𝑀1 +𝑀2 + 1
෍

𝑘=−𝑀1

𝑀2

𝑥[𝑛 − 𝑘]

𝑦 𝑛 = ෍

𝑘=−∞

𝑛

𝑥[𝑘]

𝑦 𝑛 = 𝑥 𝑛 + 1 − 𝑥[𝑛]

𝑦 𝑛 = 𝑥 𝑛 − 𝑥[𝑛 − 1]



Examples



Constant-Coefficient 

Difference Equations (CCDE)



Discrete-Time Systems
• Block diagram representation

adder

unit delay

constant 
multiplier



Recursive Systems

• If an impulse response has a finite duration, the 

system is an FIR system. Otherwise, an IIR system.

• An FIR system can be implemented directly using 

a finite number of adders, multipliers and delays.

– e.g.) Implement the system with ℎ[𝑛]

1 2

4

3

1 1

0



Recursive Systems

• Can you directly implement the cumulative averaging 

system?

• It can be implemented in a recursive manner with a 

feedback loop

– Past output values are used to compute a current output value
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Constant-Coefficient Difference 

Equations (CCDE)

0 0

[ ] [ ]
N M

k k

k k

a y n k b x n k
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• The equation defines a recursive system, which 

processes an input 𝑥[𝑛] to make the output 𝑦[𝑛]

• 𝑁 is the order of the equation or the 

corresponding system



Constant-Coefficient Difference 

Equations (CCDE)

• Example 1: Accumulator 𝑦 𝑛 = σ𝑘=−∞
𝑛 𝑥[𝑘]
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Constant-Coefficient Difference 

Equations (CCDE)

• Example 1: MA System 𝑦 𝑛 =
1

𝑀2+1
σ𝑘=0
𝑀2 𝑥[𝑛 − 𝑘]
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Constant-Coefficient Difference 

Equations (CCDE)

• Suppose that 𝑥[𝑛] is given, and we want to get 

𝑦[𝑛] for 𝑛 ≥ 0. Which information do we need 

further?
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Constant-Coefficient Difference 

Equations (CCDE)

• Initial rest condition

• If 𝑥[𝑛] starts at 𝑛 = 𝑛0, i.e., 𝑥[𝑛] = 0when 𝑛 < 𝑛0, then 

𝑦[𝑛] = 0when 𝑛 < 𝑛0.

• Alternatively, the initial values are 

𝑦[𝑛0− 1] = 𝑦[𝑛0− 2] = ⋯ = 𝑦[𝑛0− 𝑁] = 0.

• If we assume the initial rest condition, then the system 

described by the equation is LTI. 
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Constant-Coefficient Difference 

Equations (CCDE)

• More details will be studied later, especially in 

Chap 6.



Frequency Domain 

Representation of Discrete-

Time Signals and Systems



Eigenfunctions for LTI Systems

LTI
ℎ[𝑛]

𝑦 𝑛 = 𝑥 𝑛 ∗ ℎ 𝑛
𝐻(𝑒𝑗𝜔)𝑒𝑗𝜔𝑛

𝛿[𝑛]

𝑥[𝑛]

𝑒𝑗𝜔𝑛

• 𝑒𝑗𝜔𝑛 is an eigenfunction of LTI systems

• Its eigenvalue is given by the Fourier transform of 
impulse response, 𝐻(𝑒𝑗𝜔),  which is called frequency 
response

𝐻 𝑒𝑗𝜔 = ෍

𝑘=−∞

∞

ℎ 𝑘 𝑒−𝑗𝜔𝑘



Eigenfunctions for LTI Systems

LTI
𝑥 𝑛

=෍

𝑘

𝛼𝑘 𝑒
𝑗𝜔𝑘𝑛

𝑦 𝑛

=෍

𝑘

𝛼𝑘 𝐻(𝑒
𝑗𝜔𝑘)𝑒𝑗𝜔𝑘𝑛



Frequency Response

• Ex) Determine the output sequence of the system with 

impulse response 

ℎ 𝑛 =
1

2𝑛
𝑢[𝑛]

when the input is a complex exponential 

𝑥[𝑛] = 𝐴𝑒𝑗
𝜋
2𝑛



Frequency Response

• Ex) Determine the magnitude and phase of 𝐻(𝑒𝑗𝜔) for 

the three-point moving average (MA) system

𝑦[𝑛] =
1

3
{𝑥 𝑛 + 1 + 𝑥 𝑛 + 𝑥 𝑛 − 1 }.



Sinusoidal Input

• Assuming that ℎ[𝑛] is real, we have the 

input-output relationship

1. The amplitude is multiplied by 𝐻 𝑒𝑗𝜔

2. The output has a phase lag relative to the 

input by an amount 𝜃 𝜔 = ∠𝐻(𝑒𝑗𝜔)

LTI𝐴 cos(𝜔0𝑛 + 𝜙) 𝐴 |𝐻 𝑒𝑗𝜔0 |cos(𝜔0𝑛 + 𝜙 + 𝜃(𝜔0))

𝐻 𝑒𝑗𝜔 = 𝐻 𝑒𝑗𝜔 𝑒𝑗𝜃 𝜔



Ideal Filters

𝐻 𝑒𝑗𝜔 = 𝐻 𝑒𝑗(𝜔+2𝜋𝑟)



Representation of Sequences 

by Fourier Transforms



Discrete-Time Fourier Transform

• DTFT can be derived from DTFS (discrete-time 

Fourier series)

• Frequency response is the DTFT of impulse response

• The existence of 𝑋 𝑒𝑗𝜔

– A sufficient condition: 𝑥 𝑛 is absolutely summable

– We avoid rigorous conditions/proofs and use well-known 

Fourier transform pairs
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Fourier Transform Pairs 



Symmetry Property



Symmetry Property

Figure 2.22   Frequency response for a system with impulse response h[n] = anu[n]. 

a > 0; a = 0.75 (solid curve) and a = 0.5 (dashed curve). (a) Real part. (b) Imaginary 

part. (c) Magnitude. (d) Phase. 



Fourier Transform Theorems



Convolution Theorem

• 𝑦 𝑛 = 𝑥 𝑛 ∗ ℎ 𝑛 ⇒ 𝑌 𝑒𝑗𝜔 = 𝑋 𝑒𝑗𝜔 𝐻 𝑒𝑗𝜔



Convolution Theorem: Another Perspective

LTI
𝑥 𝑛

=෍

𝑘

𝛼𝑘 𝑒
𝑗𝜔𝑘𝑛

𝑦 𝑛

=෍

𝑘

𝛼𝑘 𝐻(𝑒
𝑗𝜔𝑘)𝑒𝑗𝜔𝑘𝑛

𝑥 𝑛

=
1

2𝜋
න
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1
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න
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Examples

• 𝑥 𝑛 = 𝑎𝑛𝑢 𝑛 − 5 . What is 𝑋(𝑒𝑗𝜔)?



Examples

• 𝑋 𝑒𝑗𝜔 =
1

(1−𝑎𝑒−𝑗𝜔)(1−𝑎𝑒−𝑗𝜔)
.What is 𝑥 𝑛 ?



Examples

• 𝑋 𝑒𝑗𝜔 =
1

(1−𝑎𝑒−𝑗𝜔)(1−𝑏𝑒−𝑗𝜔)
.What is 𝑥 𝑛 ?



Examples

• Determine the impulse response ℎ[𝑛] of a 

highpass filter with frequency response 

𝐻 𝑒𝑗𝜔 = ൝
𝑒−𝑗𝜔𝑛𝑑 , 𝜔𝑐 < 𝜔 < 𝜋,

0, 𝜔 < 𝜔𝑐 .



Examples

• Determine the frequency response and the impulse 
response of a system described by a CCDE

𝑦 𝑛 −
1

2
𝑦 𝑛 − 1 = 𝑥 𝑛 −

1

4
𝑥 𝑛 − 1 .


