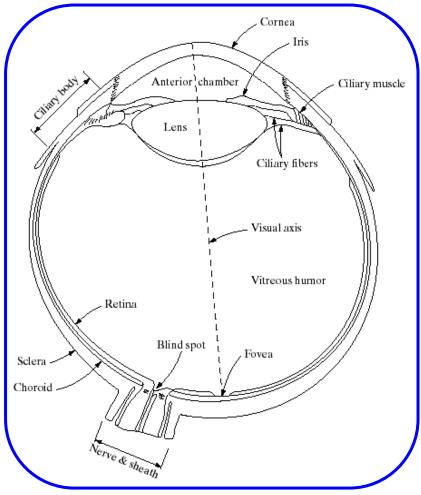
Digital Image Fundamentals

Chang-Su Kim

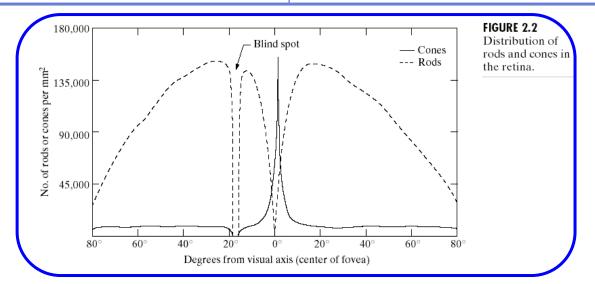
Contents

- Human Visual System
- Basic Relationships between Pixels
- Image Fidelity Criterion

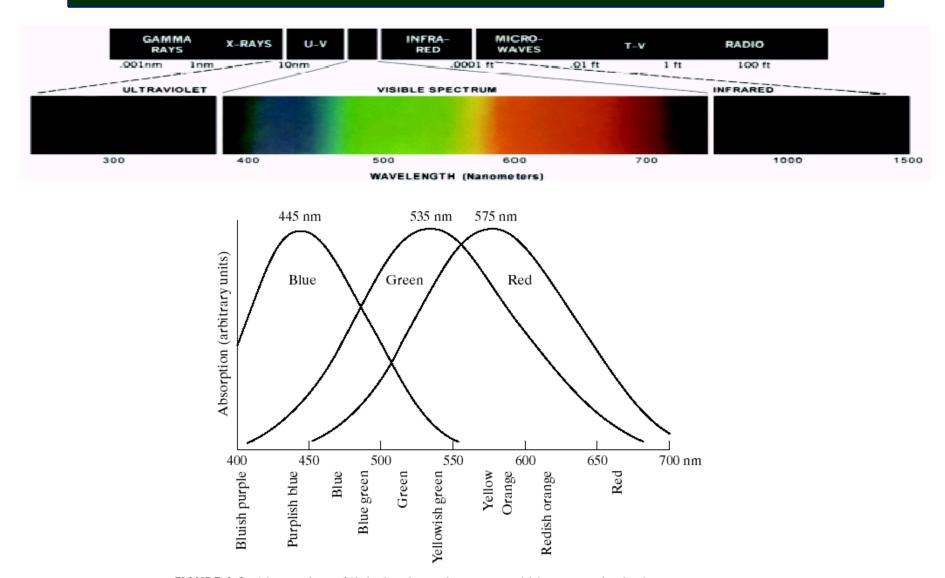

Human Visual System

Understanding of HVS

- Measure of image fidelity or quality
- Design and evaluation of DIP systems


Human eye

- Retina: film
- Fovea: center of retina
- Cones and rods: discrete light receptors on retina



Cones and Rods

Cones	Rods
Bright-light vision (photopic vision)	Dim-light vision (scotopic vision)
Sensitive to high level of illumination	Sensitive to low level of illumination
Concentrated around fovea (region of interest)	Widely distributed (overall picture)
Sensitive to colors	Insensitive to colors
6-7 millions	75-150 millions

Red, Green, and Blue Cones

FIGURE 6.3 Absorption of light by the red, green, and blue cones in the human eye as a function of wavelength.

Color Blindness

Color deficiency

Not color blindness

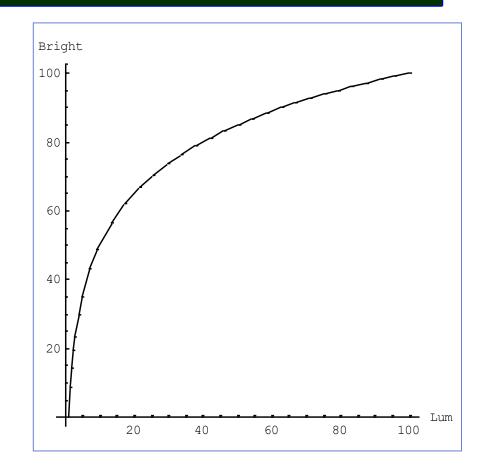
This happens when

- One or more cones are missing
- Their peak sensitivities are different from normal ones
- R-cone and G-cone deficiencies are more common than B-cone deficiency

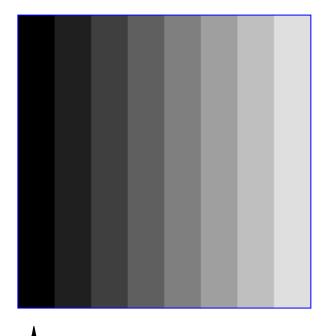
normal R-cone G-cone

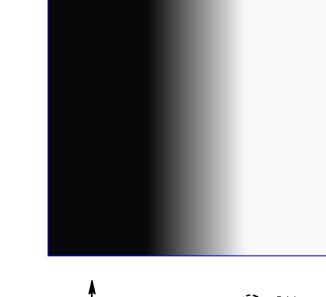
B-cone

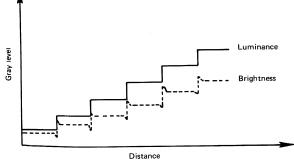
Radiance, Luminance and Brightness

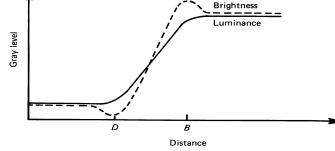

- Radiance
 - The total amount of energy that flows from a light source
- Luminance
 - The amount of energy an observer perceives from a light source
- Brightness
 - Subjective description of luminance

- e.g.) Infrared heater
- × High radiance it is a heater !
- Low luminance human eyes are sensitive only to visible spectrum


Radiance, Luminance and Brightness


- Brightness (*b*) vs. Luminance (*l*)
 - Log relation (approximate)
 - $b = 50 \log_{10} l$
 - (1<= /<=100)
 - × *l* = 10, *b*=50
 - × /= 100, *b* = 100
 - To be two times brighter, luminance should be squared

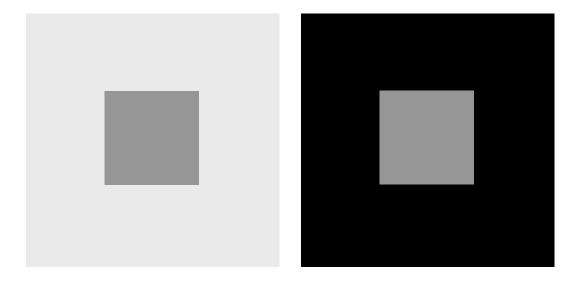



Mach Bands

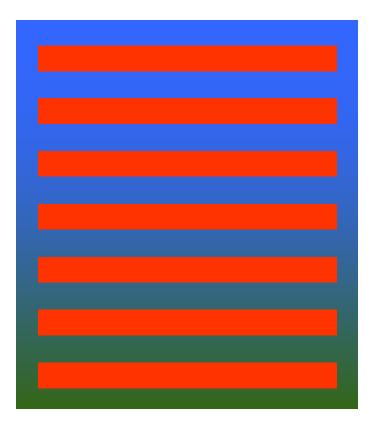
 Perceived brightness depends on surroundings as well as luminance

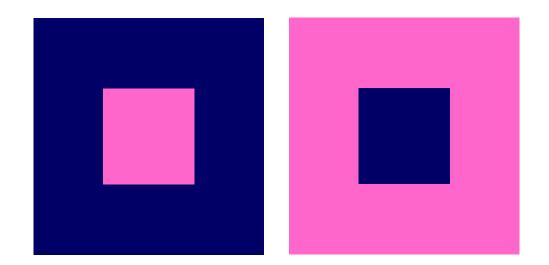
Luminance versus brightness.

Mach band effect.

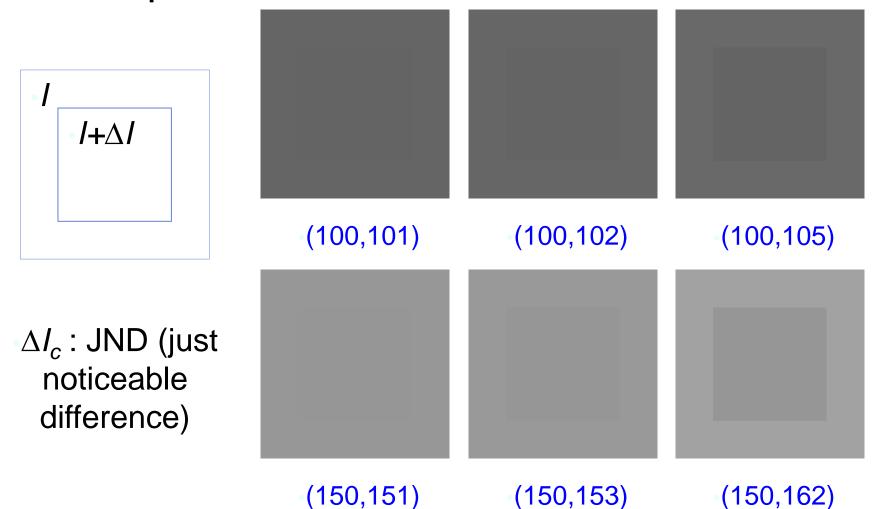

Simultaneous Contrast

 Perceived brightness depends on surroundings as well as luminance


Simultaneous Contrast

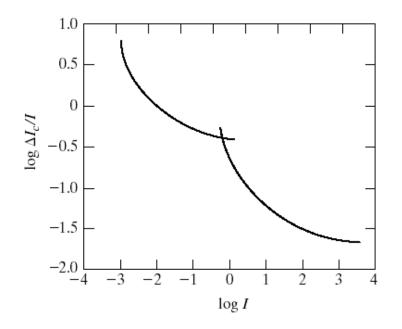

 Perceived brightness depends on surroundings as well as luminance

Simultaneous Contrast

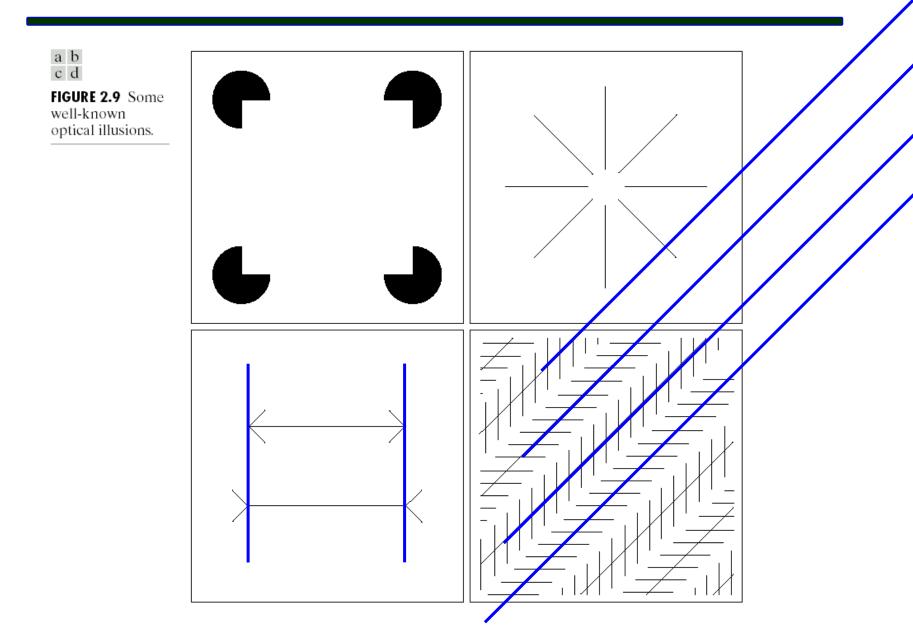

Perceived color also depends on surroundings

Brightness Discrimination

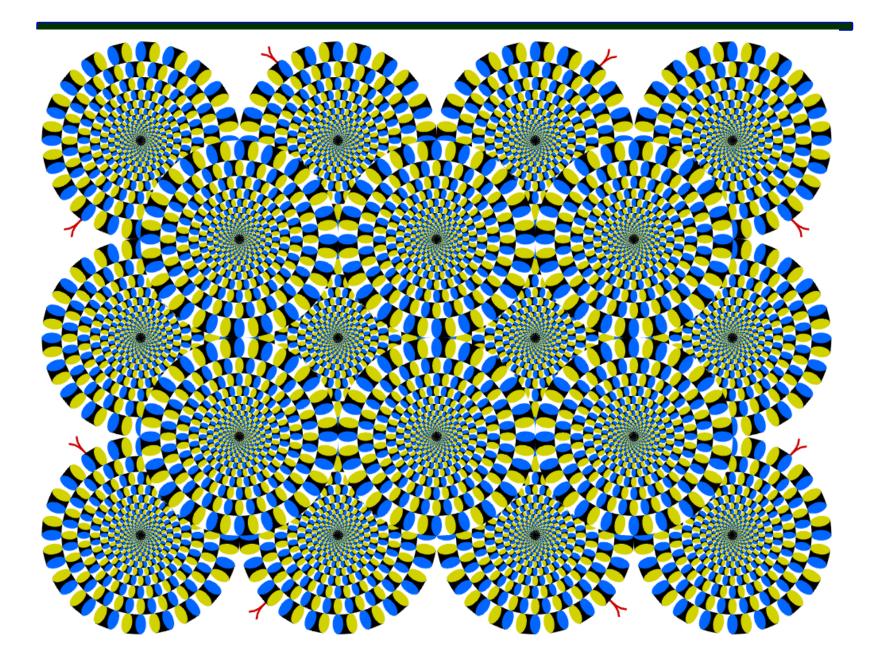
Experiments

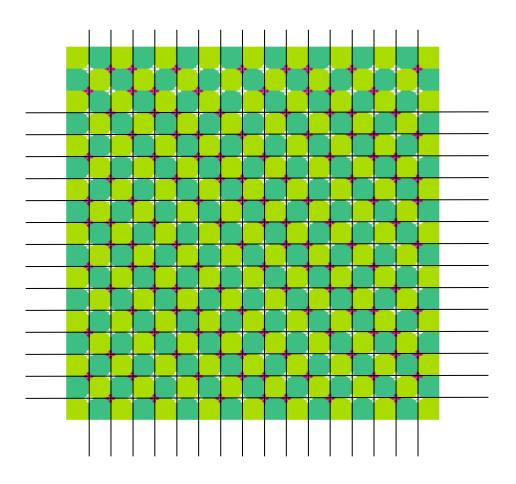


Weber's Ratio


- I and $I + \Delta I_c$
 - Their differences can be just noticeable
 - ΔI_c depends on I
- Weber's law

$$\frac{\Delta l_c}{l} = \text{constant}$$

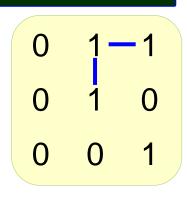

More recent result

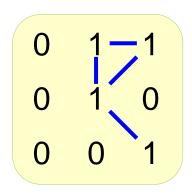

Optical Illusions

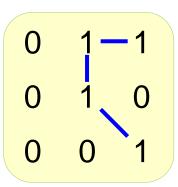
More Illusion Examples


More Illusion Examples

We do not understand HVS fully.

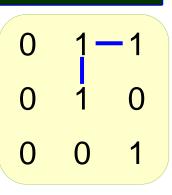

Basic Relationships between Pixels

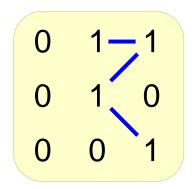

- Neighborhood
 - 4-neighbors of p = (x,y): $N_4(p)$
 - × (x+1,y), (x-1,y), (x,y-1), (x, y+1)
 - Four diagonal neighbors of p: N_D(p)
 - **x** (x+1,y+1), (x+1,y-1)
 - **x** (x-1,y+1), (x-1,y-1)
 - ► 8-neighbors of p: $N_8(p) = N_4(p) U N_D(p)$
- Note that neighborhood depends on pixel coordinates only (not on pixel values)



Basic Relationships between Pixels

- Let V be a set of similar gray values
 - e.g. V={1} in binary images
- Adjacency
 - p and q are 4-adjacent if
 - \times f(p), f(q) \in V, and
 - × $q \in N_4(p)$ (equivalent to $p \in N_4(q)$)
 - p and q are 8-adjacent if
 - \times f(p), f(q) \in V, and
 - × $q \in N_8(p)$
 - p and q are m-adjacent if
 - \times f(p), f(q) \in V, and
 - \varkappa (i) $q\in$ $N_4(p), or$
 - (ii) $q \in N_D(p)$ and the set $N_4(p) \cap N_4(q)$ has no pixels whose values are in V



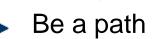


Basic Relationships between Pixels

- Path or Curve (from p₁ to p_n)
 - There exists a sequence
 - × p₁, p₂, p₃, ... p_{n-1}, p_n
 - \mathbf{x} s.t. each p_i and p_{i+1} are adjacent
 - Path length = n-1
 - Closed path if $p_1 = p_n$
 - 4-path, 8-path, m-path
- Connected Set
 - A set of pixels S is connected if for each p, q in S, there exists a path between p and q
 - 4-connected set, 8-connected set, mconnected set

Summary of Pixel Relationships

Neighborhood

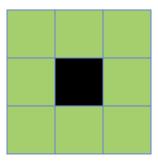

- Coordinates concept
- 4-neighborhood, 8-neighborhood
- Adjacency
 - Neighborhood + similar pixel values (same pixel value in binary case)
 - ► 4-adjacency, 8-adjacency, and m-adjacency
- Path
 - Pixel sequence in which each pair of consecutive elements are adjacent
 - Important in describing region boundaries

Connected Set

- Between every pair of pixels, there exists a path
- Important in describing regions

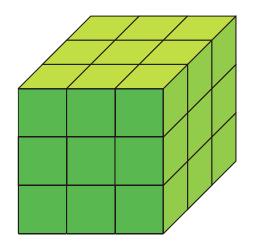
Scan Converting of Lines

- Concept of path
- Draw the line y = f(x)=2x
 - for each x, plot (x, f(x))
 - × (0,0), (1,2), (2,4), (3,6) ...
 - Not a path
- Alternatively, x=g(y)=0.5y
 - for each y, plot (g(y), y)
 - × (0,0), (0.5, 1), (1, 2),
 (1.5, 3), (2, 4), (2.5, 5),
 (3, 6)
 - (0, 0), (1, 1), (1, 2),
 (2, 3), (2, 4), (3, 5)
 (3, 6)


y ▲				
T				
	_			
	_			
			_	
1				
ч У				
ı y ↑				
y				
y ↓				
y ↑				
y 1				

1

Χ


2D Neighbors vs. 3D Neighbors

2D neighborhood (square pixel)

4-neighbors: share edge8-neighbors: share edge or vertex

3D neighborhood (cube voxel)

6-neighbors: share face

18-neighbors: share face or edge

26-neighbors: share face, edge or vertex

- D is a distance function (or metric or norm) if
 - 1. $D(p,q) \ge 0$ (D(p,q)=0 iff p=q)
 - $\textbf{2.} \quad \mathsf{D}(\mathsf{p},\mathsf{q})=\mathsf{D}(\mathsf{q},\mathsf{p})$
 - 3. $D(p,q) \leq D(p,z)+D(z,q)$

where p=(x,y), q=(s,t), z=(v,w) are pixel coordinates

- $D_n(p,q) = [|x-s|^n + |y-t|^n]^{1/n}$
 - $D_2(p,q) = [(x-s)^2 + (y-t)^2]^{1/2}$
 - × Euclidian distance
 - Conditions 1 and 2 are obvious
 - Condition 3 is due to triangle inequality
 - $D_1(p,q) = |x-s| + |y-t|$

►
$$D_{\infty}(p,q) = max\{ |x-s|, |y-t| \}$$

```
D_2(p,q) = Sqrt(5)
D_1(p,q) = 3
D_{\infty}(p,q) = 2
```

- It can be shown that D_n(p,q) is a valid distance function for each positive number n
- For example, consider D₁(p,q) = |x-s| + |y-t|, where p = (x,y) and q = (s,t)
 - Condition 1
 - × $D_1(p,q) \ge 0$ since it is the sum of absolute values
 - × $D_1(p,q) = 0$ if and only if x=s and y=t (i.e. p=q)

Condition 2

× $D_1(p,q) = |x-s| + |y-t| = |s-x| + |t-x| = D_1(q,p)$

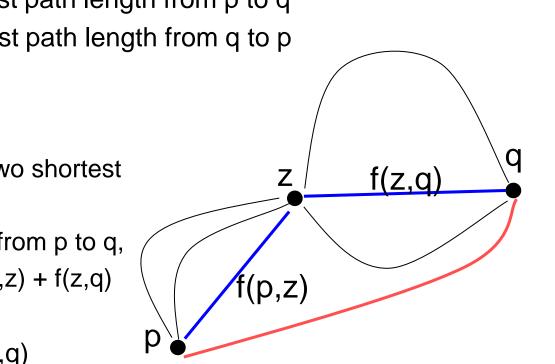
► Condition 3

х

- Let z=(v,w) be a pixel coordinate
- × $|x-s| \le |x-v| + |v-s|$ (Lemma in next slide)
- **x** Similarly, $|y-t| \le |y-w| + |w-t|$

Therefore,
$$D_1(p,q) = |x-s| + |y-t|$$

 $\leq |x-v| + |v-s| + |y-w| + |w-t|$
 $= |x-v| + |y-w| + |v-s| + |w-t|$
 $= D_1(p,z) + D_1(z,q)$


- Lemma: For any scalars x, v, s, |x-s| ≤ |x-v| + |v-s|
- Proof) 1) $(x-v) \ge 0$ and $(v-s) \ge 0$: |X-V|+|V-S| = X-V + V-S = X-S = |X-S|2) (x-v) < 0 and (v-s) < 0: |X-V|+|V-S| = V-X + S-V = S-X = |S-X|3) $(x-v) \ge 0$ and (v-s) < 0: Х S a) x ≤s: $v \leq x \leq s$ Thus, $|x-s| < |v-s| \le |x-v| + |v-s|$ b) x>s: V<S<X Thus, $|x-s| < |x-v| \le |x-v| + |v-s|$ 4) (x-v) < 0 and $(v-s) \ge 0$: Similar to Case 3)

- f(p,q): the length of the shortest 8-path between p and q
 - If there is no 8-path, then f(p,q)=∞

$$f(p,q) = 4$$
 $f(p,q) = 2$ $f(p,q) = \infty$ 01-1(p)01-1(p)01-1(p)100100001-1(q)01(q)01-1(q)

Is f(p,q) a valid distance function?
 Yes, it is.

- Conditon 1:
 - $f(p,q) = the shortest path length \ge 0$
 - f(p,q) = 0 iff p=q
- Condition 2:
 - $\mathbf{F} (\mathbf{p}, \mathbf{q}) =$ the shortest path length from p to q
 - = the shortest path length from q to p
 - = f(q,p)
- Condition 3:
 - Concatenation of two shortest paths
 - There exist a path from p to q, whose length is f(p,z) + f(z,q)
 - Therefore, $f(p,q) \leq f(p,z) + f(z,q)$

Image Fidelity Criteria

- i.e.) Image compression
 - f(x,y): original image of resolution M x N
 - g(x,y): reconstructed image of the same resolution
 - ► How similar g(x,y) is to f(x,y) ?
- MSE (Mean Square Error)

MSE =
$$\frac{1}{MN} \sum_{x=1}^{M} \sum_{y=1}^{N} (f(x, y) - g(x, y))^2$$

PSNR (Peak Signal to Noise Ratio)

$$PSNR = 10\log_{10}\frac{255^2}{MSE} \quad (dB)$$

Image Fidelity Criteria

MAD (Mean Absolute Difference)

M AD =
$$\frac{1}{MN} \sum_{x=1}^{M} \sum_{y=1}^{N} |f(x, y) - g(x, y)|$$

- Comparison
 - MAD is faster
 - MSE facilitates mathematical analysis
 - PSNR is intuitive
 - × > 35 dB : almost the same as the original
 - × < 25 dB : very poor quality
 - x 28 32 dB : acceptable quality at very low bitrate applications