Digital Image Fundamentals

Chang-Su Kim

Contents

- Human Visual System
- Basic Relationships between Pixels
- Image Fidelity Criterion

Human Visual System

- Understanding of HVS
- Measure of image fidelity or quality
- Design and evaluation of DIP systems
- Human eye
- Retina: film
- Fovea: center of retina
- Cones and rods: discrete light receptors on retina

Cones and Rods

Cones	Rods
Bright-light vision (photopic vision)	Dim-light vision (scotopic vision)
Sensitive to high level of illumination	Sensitive to low level of illumination
Concentrated around fovea (region of interest)	Widely distributed (overall picture)
Sensitive to colors	Insensitive to colors
$6-7$ millions	$75-150$ millions

(180,000

Red, Green, and Blue Cones

FIGURE 6.3 Absorption of light by the red, green, and blue cones in the human eye as a function of wavelength.

Color Blindness

- Color deficiency
- Not color blindness
- This happens when
- One or more cones are missing
- Their peak sensitivities are different from normal ones
- R -cone and G-cone deficiencies are more common than B-cone deficiency

Radiance, Luminance and Brightness

- Radiance
- The total amount of energy that flows from a light source
- Luminance
- The amount of energy an observer perceives from a light source
- Brightness
- Subjective description of luminance
e.g.) Infrared heater
\times High radiance - it is a heater !
* Low luminance - human eyes are sensitive only to visible spectrum

Radiance, Luminance and Brightness

- Brightness (b) vs.

Luminance ()

- Log relation (approximate)
- $b=50 \log _{10} l$
($1<=/<=100$)
$\times \quad l=10, b=50$
$\times \quad l=100, b=100$
\times To be two times brighter, luminance should be squared

Mach Bands

- Perceived brightness depends on surroundings as well as luminance

Luminance versus brightness.

Mach band effect.

Simultaneous Contrast

- Perceived brightness depends on surroundings as well as luminance

Simultaneous Contrast

- Perceived brightness depends on surroundings as well as luminance

Simultaneous Contrast

- Perceived color also depends on surroundings

Brightness Discrimination

- Experiments

$\Delta I_{c}:$ JND (just noticeable difference)

Weber's Ratio

- I and $l+\Delta I_{c}$
- Their differences can be just noticeable
- ΔI_{c} depends on I
- Weber's law
- $\frac{\Delta l_{c}}{l}=$ constant
- More recent result

Optical Illusions

$\begin{array}{ll}\text { a } & b \\ \text { c } & d\end{array}$

FIGURE 2.9 Some
well-known
optical illusions.

More Illusion Examples

More Illusion Examples

We do not understand HVS fully.

Basic Relationships between Pixels

- Neighborhood
- 4-neighbors of $p=(x, y): N_{4}(p)$

$$
x(x+1, y),(x-1, y),(x, y-1),(x, y+1)
$$

- Four diagonal neighbors of $p: N_{D}(p)$

$$
\begin{aligned}
& \times(x+1, y+1),(x+1, y-1) \\
& \times(x-1, y+1),(x-1, y-1)
\end{aligned}
$$

- 8-neighbors of $p: N_{8}(p)=N_{4}(p) \cup N_{D}(p)$
- Note that neighborhood depends on pixel coordinates only (not on pixel values)

Basic Relationships between Pixels

- Let V be a set of similar gray values
- e.g. $\mathrm{V}=\{1\}$ in binary images
- Adjacency
- p and q are 4-adjacent if

$$
\begin{aligned}
& \times f(p), f(q) \in V \text {, and } \\
& \left.\times q \in N_{4}(p) \text { (equivalent to } p \in N_{4}(q)\right)
\end{aligned}
$$

- p and q are 8 -adjacent if

$$
\begin{aligned}
& \times f(p), f(q) \in V \text {, and } \\
& \times q \in N_{8}(p)
\end{aligned}
$$

- p and q are m-adjacent if

$$
\begin{aligned}
& \times f(p), f(q) \in V \text {, and } \\
& \times \text { (i) } q \in N_{4}(p) \text {, or } \\
& \text { (ii) } q \in N_{D}(p) \text { and the set } N_{4}(p) \cap N_{4}(q) \\
& \text { has no pixels whose values are in } V
\end{aligned}
$$

Basic Relationships between Pixels

- Path or Curve (from p_{1} to p_{n})
- There exists a sequence
$\times p_{1}, p_{2}, p_{3}, \ldots p_{n-1}, p_{n}$
\times s.t. each p_{i} and p_{i+1} are adjacent
$\begin{array}{lll}0 & 1-1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}$
- Path length $=n-1$
- Closed path if $p_{1}=p_{n}$
- 4-path, 8-path, m-path
- Connected Set
- A set of pixels S is connected if for each p, q in S, there exists a path between p and q
- 4-connected set, 8-connected set, mconnected set

Summary of Pixel Relationships

- Neighborhood
- Coordinates concept
- 4-neighborhood, 8-neighborhood
- Adjacency
- Neighborhood + similar pixel values (same pixel value in binary case)
- 4-adjacency, 8-adjacency, and m-adjacency
- Path
- Pixel sequence in which each pair of consecutive elements are adjacent
- Important in describing region boundaries
- Connected Set
- Between every pair of pixels, there exists a path
- Important in describing regions

Scan Converting of Lines

- Concept of path
- Draw the line $y=f(x)=2 x$
- for each x , plot $(\mathrm{x}, \mathrm{f}(\mathrm{x})$)

$$
\times(0,0),(1,2),(2,4),(3,6) \ldots
$$

- Not a path
- Alternatively, $x=g(y)=0.5 y$

- for each y , plot ($\mathrm{g}(\mathrm{y}), \mathrm{y})$

$$
\begin{aligned}
\times & (0,0),(0.5,1),(1,2), \\
& (1.5,3),(2,4),(2.5,5), \\
& (3,6) \\
\times & (0,0),(1,1),(1,2), \\
& (2,3),(2,4),(3,5) \\
& (3,6)
\end{aligned}
$$

- Be a path

2D Neighbors vs. 3D Neighbors

- 2D neighborhood (square pixel)

4-neighbors: share edge
8 -neighbors: share edge or vertex

- 3D neighborhood (cube voxel)

6-neighbors: share face
18-neighbors: share face or edge
26-neighbors: share face, edge or vertex

Distance between Pixel Coordinates

- $\quad D$ is a distance function (or metric or norm) if

1. $D(p, q) \geq 0(D(p, q)=0$ iff $p=q)$
2. $D(p, q)=D(q, p)$
3. $D(p, q) \leq D(p, z)+D(z, q)$
where $p=(x, y), q=(s, t), z=(v, w)$ are pixel coordinates

- $\quad D_{n}(p, q)=\left[|x-s|^{n}+|y-t|^{n}\right]^{1 / n}$
- $\mathrm{D}_{2}(\mathrm{p}, \mathrm{q})=\left[(\mathrm{x}-\mathrm{s})^{2}+(\mathrm{y}-\mathrm{t})^{2}\right]^{1 / 2}$
\times Euclidian distance
x Conditions 1 and 2 are obvious
\times Condition 3 is due to triangle inequality
- $\quad \mathrm{D}_{1}(\mathrm{p}, \mathrm{q})=|\mathrm{x}-\mathrm{s}|+|\mathrm{y}-\mathrm{t}|$
- $\mathrm{D}_{\infty}(\mathrm{p}, \mathrm{q})=\max \{|\mathrm{x}-\mathrm{s}|,|\mathrm{y}-\mathrm{t}|\}$

0	p	0
0	0	0
0	0	q

$$
\begin{gathered}
D_{2}(p, q)=\operatorname{Sqrt}(5) \\
D_{1}(p, q)=3 \\
D_{\infty}(p, q)=2
\end{gathered}
$$

Distance between Pixel Coordinates

- It can be shown that $D_{n}(p, q)$ is a valid distance function for each positive number n
- For example, consider $D_{1}(p, q)=|x-s|+|y-t|$, where $\mathrm{p}=(\mathrm{x}, \mathrm{y})$ and $\mathrm{q}=(\mathrm{s}, \mathrm{t})$
- Condition 1
$\times \quad D_{1}(p, q) \geq 0$ since it is the sum of absolute values
$\times \quad D_{1}(p, q)=0$ if and only if $x=s$ and $y=t$ (i.e. $p=q$)
- Condition 2

$$
x \quad D_{1}(p, q)=|x-s|+|y-t|=|s-x|+|t-x|=D_{1}(q, p)
$$

- Condition 3
x Let $\mathrm{z}=(\mathrm{v}, \mathrm{w})$ be a pixel coordinate
$\times \quad|\mathrm{x}-\mathrm{s}| \leq|\mathrm{x}-\mathrm{v}|+|\mathrm{v}-\mathrm{s}| \quad$ (Lemma in next slide)
x Similarly, $|y-t| \leq|y-w|+|w-t|$
x Therefore, $D_{1}(p, q)=|x-s|+|y-t|$

$$
\begin{aligned}
& \leq|x-v|+|v-s|+|y-w|+|w-t| \\
& =|x-v|+|y-w|+|v-s|+|w-t| \\
& =D_{1}(p, z)+D_{1}(z, q)
\end{aligned}
$$

Distance between Pixel Coordinates

- Lemma: For any scalars x, v, s,

$$
|\mathrm{x}-\mathrm{s}| \leq|\mathrm{x}-\mathrm{v}|+|\mathrm{v}-\mathrm{s}|
$$

- Proof)

1) $(x-v) \geq 0$ and $(v-s) \geq 0$:

$$
|x-v|+|v-s|=x-v+v-s=x-s=|x-s|
$$

2) $(x-v)<0$ and $(v-s)<0$:

$$
|x-v|+|v-s|=v-x+s-v=s-x=|s-x|
$$

3) $(x-v) \geq 0$ and $(v-s)<0$:
a) $x \leq s$:

$$
\begin{aligned}
& v \leq x \leq s \\
& \text { Thus, }|x-s|<|v-s| \leq|x-v|+|v-s|
\end{aligned}
$$

b) $x>s$:

$$
\mathrm{v}<\mathrm{S}<\mathrm{x}
$$

$$
\text { Thus, }|x-s|<|x-v| \leq|x-v|+|v-s|
$$

4) $(x-v)<0$ and $(v-s) \geq 0$:

Similar to Case 3)

Distance between Pixel Coordinates

- $f(p, q)$: the length of the shortest 8-path between p and q
- If there is no 8-path, then $f(p, q)=\infty$

$f(p, q)=4$	$f(p, q)=2$	$f(p, q)=\infty$
0	0	$1-1(p)$
0	0	$1-1(p)$
0	0	$1-1(p)$
0	0	0
0	0	0
0	$1-1(q)$	$1-1(q)$

- Is $f(p, q)$ a valid distance function?
- Yes, it is.

Distance between Pixel Coordinates

- Conditon 1 :
- $f(p, q)=$ the shortest path length ≥ 0
- $f(p, q)=0$ iff $p=q$
- Condition 2:
- $f(p, q)=$ the shortest path length from p to q $=$ the shortest path length from q to p $=f(q, p)$
- Condition 3:
- Concatenation of two shortest paths
- There exist a path from p to q , whose length is $f(p, z)+f(z, q)$
- Therefore,

$$
f(p, q) \leq f(p, z)+f(z, q)
$$

Image Fidelity Criteria

- i.e.) Image compression
- $f(x, y)$: original image of resolution $M \times N$
- $g(x, y)$: reconstructed image of the same resolution
- How similar $g(x, y)$ is to $f(x, y)$?
- MSE (Mean Square Error)

$$
\operatorname{MSE}=\frac{1}{M N} \sum_{x=1}^{M} \sum_{y=1}^{N}(f(x, y)-g(x, y))^{2}
$$

- PSNR (Peak Signal to Noise Ratio)

$$
\mathrm{PSNR}=10 \log _{10} \frac{255^{2}}{\mathrm{MSE}}(\mathrm{~dB})
$$

Image Fidelity Criteria

- MAD (Mean Absolute Difference)
$\mathrm{M} \mathrm{AD}=\frac{1}{M N} \sum_{x=1}^{M} \sum_{y=1}^{N}|f(x, y)-g(x, y)|$
- Comparison
- MAD is faster
- MSE facilitates mathematical analysis
- PSNR is intuitive
$x>35 \mathrm{~dB}$: almost the same as the original
$x<25 \mathrm{~dB}$: very poor quality
$\times 28-32 \mathrm{~dB}$: acceptable quality at very low bitrate applications

