

Digital Image Processing

Sampling

Chang-Su Kim

Sampling and Quantization

a b c d

FIGURE 2.16 Generating a digital image. (a) Continuous image. (b) A scan line from *A* to *B* in the continuous image, used to illustrate the concepts of sampling and quantization. (c) Sampling and quantization. (d) Digital scan line.

2-D Function

Continuous function (analog image)

 $f(x,y):x,y\in\mathbb{R}$

Discrete function (sampled image)

 $u(m,n):m,n\in\mathbb{Z}$

Delta Function in 1-D Discrete Case

Delta function

$$\delta(n) = \begin{cases} 1 & \text{if } n = 0, \\ 0 & \text{otherwise.} \end{cases}$$

Arbitrary function as sum of shifted delta functions

$$u(n) = \sum_{\bar{n}=-\infty}^{\infty} u(\bar{n})\delta(n-\bar{n})$$

Delta Function in 2-D Discrete Case

Delta function

$$\delta(m,n) = \delta(m) \cdot \delta(n)$$

Arbitrary function as sum of shifted delta functions

$$u(m,n) = \sum_{\bar{m}=-\infty}^{\infty} \sum_{\bar{n}=-\infty}^{\infty} u(\bar{m},\bar{n})\delta(m-\bar{m},n-\bar{n})$$

Delta Function in 1-D Continuous Case

Approximate delta function

$$\delta_{\epsilon}(x) = \begin{cases} \frac{1}{2\epsilon} & \text{if } |x| < \epsilon, \\ 0 & \text{otherwise.} \end{cases}$$

Delta function

$$\delta(x) = \lim_{\epsilon \to 0} \delta_{\epsilon}(x)$$

Delta Function in 1-D Continuous Case

Arbitrary function as sum (integral) of shifted delta functions

$$f(x) = \int_{-\infty}^{\infty} f(\bar{x})\delta(x - \bar{x})d\bar{x}$$

$$\int_{-\infty}^{\infty} f(\bar{x})\delta(x-\bar{x})d\bar{x} = \lim_{\epsilon \to 0} \int_{-\infty}^{\infty} f(\bar{x})\delta_{\epsilon}(x-\bar{x})d\bar{x}$$
$$= \lim_{\epsilon \to 0} \frac{1}{2\epsilon} \int_{x-\epsilon}^{x+\epsilon} f(\bar{x})d\bar{x}$$
$$= f(x)$$

Delta Function in 2-D Continuous Case

Delta function

$$\delta(x,y) = \delta(x) \cdot \delta(y)$$

Arbitrary function as sum of shifted delta functions

$$f(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\bar{x},\bar{y})\delta(x-\bar{x},y-\bar{y})d\bar{x}d\bar{y}$$

Linear Shift Invariant System

$$u(m,n) \longrightarrow \mathcal{H} \longrightarrow v(m,n)$$

Linearity

$$\mathcal{H}[u_1(m,n)] = v_1(m,n), \\ \mathcal{H}[u_2(m,n)] = v_2(m,n) \\ \Rightarrow \mathcal{H}[a_1u_1(m,n) + a_2u_2(m,n)] \\ = a_1v_1(m,n) + a_2v_2(m,n)$$

Shift Invariance

$$\mathcal{H}[u(m,n)] = v(m,n)$$

$$\Rightarrow \mathcal{H}[u(m-\bar{m},n-\bar{n})] = v(m-\bar{m},n-\bar{n})$$

Consider an LSI system \mathcal{H} such that

$$\mathcal{H}(\delta(m,n)) = h(m,n)$$

h(m, n) is called impulse response point spread function (PSF)

Convolution

Given an LSI system H with PSF h(m, n) and an arbitrary input u(m, n), what is the output v(m, n)?
Recall that

$$u(m,n) = \sum_{\bar{m}=-\infty}^{\infty} \sum_{\bar{n}=-\infty}^{\infty} u(\bar{m},\bar{n})\delta(m-\bar{m},n-\bar{n})$$

$$v(m,n) = \mathcal{H}\left[\sum_{\bar{m}=-\infty}^{\infty}\sum_{\bar{n}=-\infty}^{\infty}u(\bar{m},\bar{n})\delta(m-\bar{m},n-\bar{n})\right]$$
$$= \sum_{\bar{m}=-\infty}^{\infty}\sum_{\bar{n}=-\infty}^{\infty}u(\bar{m},\bar{n})\mathcal{H}[\delta(m-\bar{m},n-\bar{n})]$$
$$= \sum_{\bar{m}=-\infty}^{\infty}\sum_{\bar{n}=-\infty}^{\infty}u(\bar{m},\bar{n})h(m-\bar{m},n-\bar{n})$$
$$\doteq u(m,n)*h(m,n)$$

Convolution Example

Convolution of Continuous Functions

Convolution

$$g(x,y) = f(x,y) * h(x,y)$$

=
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\bar{x},\bar{y})h(x-\bar{x},y-\bar{y})d\bar{x}d\bar{y}$$

Fourier transform pair

$$F(\xi_1, \xi_2) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \exp[-j2\pi(x\xi_1 + y\xi_2)] dx dy$$

$$f(x, y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(\xi_1, \xi_2) \exp[j2\pi(x\xi_1 + y\xi_2)] d\xi_1 d\xi_2$$

- Fourier transform is an one-to-one mapping from function space to function space (information preserving).
- $\square \exp[j2\pi(x\xi_1+y\xi_2)]$
 - large ξ_1 or $\xi_i \to fast$ varying in x or y direction
 - (ξ_1, ξ_2): horizontal and vertical frequencies
 - $F(\xi_1, \xi_2)$: the amount of frequency component (ξ_1, ξ_2) , which is contained within f(x, y)

Properties of 2-D Fourier Transform

	Function	Its Fourier Transform
Linearity	af(x,y) + bg(x,y)	$aF(\xi_1,\xi_2) + bG(\xi_1,\xi_2)$
Convolution	f(x, y) * g(x, y)	$F(\xi_1,\xi_2)G(\xi_1,\xi_2)$
Multiplication	f(x,y)g(x,y)	$F(\xi_1, \xi_2) * G(\xi_1, \xi_2)$
Comb function	$\sum_{m,n=-\infty}^{\infty} \delta(x - m\Delta x, y - n\Delta y)$	$\frac{1}{\Delta x \Delta y} \sum_{k,l=-\infty}^{\infty} \delta(\xi_1 - k \frac{1}{\Delta x}, \xi_2 - l \frac{1}{\Delta y})$
Lowpass filter	$f(x,y) = \operatorname{sinc}(\alpha x)\operatorname{sinc}(\beta y)$	$F(\xi_1,\xi_2) = \begin{cases} \frac{1}{\alpha\beta}, & \xi_1 < \frac{1}{2}\alpha, \xi_2 < \frac{1}{2}\beta\\ 0, & \text{otherwise} \end{cases}$

Note:
$$\operatorname{sinc}(x) = \frac{\sin \pi x}{\pi x}$$

Sampling

Bandlimited Images

• f(x, y) is called bandlimited if

 $F(\xi_1, \xi_2) = 0$ when $|\xi_1| > \xi_{x0}$ or $|\xi_2| > \xi_{y0}$

Multiplying by Comb Function

- Sampling on a rectangular grid with spacing Δx , Δy
- Comb function

$$\operatorname{comb}(x, y; \Delta x, \Delta y) \doteq \sum_{m, n = -\infty}^{\infty} \delta(x - m\Delta x, y - n\Delta y)$$

Sampled image $f_s(x, y)$

$$f_s(x,y) = f(x,y) \operatorname{comb}(x,y;\Delta x,\Delta y)$$
$$= \sum_{m,n=-\infty}^{\infty} f(m\Delta x,n\Delta y)\delta(x-m\Delta x,y-n\Delta y)$$

Multiplying by Comb Function

Frequency Domain

$$\begin{split} F_s(\xi_1, \xi_2) &= F(\xi_1, \xi_2) * \mathcal{FOURIER}[\operatorname{comb}(x, y; \Delta x, \Delta y)] \\ &= \frac{1}{\Delta x \Delta y} \sum_{k, l = -\infty}^{\infty} F(\xi_1, \xi_2) * \delta(\xi_1 - k \frac{1}{\Delta x}, \xi_2 - l \frac{1}{\Delta y}) \\ &= \frac{1}{\Delta x \Delta y} \sum_{k, l = -\infty}^{\infty} F(\xi_1 - k \frac{1}{\Delta x}, \xi_2 - l \frac{1}{\Delta y}) \end{split}$$

Periodic replication of original transform on a grid with spacing $(\frac{1}{\Delta x}, \frac{1}{\Delta y})$

Nyquist Sampling Theorem

Folding (addition) happens between two consecutive replicas of original transform

- Thus, original transform (and image) cannot be reconstructed
- For example, let a + b = c. Can you recover a and b from c?

Pre-filtering

Before sampling, use a lowpass filter with cutoff frequencies (c_x, c_y)

$$c_x < \frac{1}{2\Delta_x}$$

$$c_y < \frac{1}{2\Delta_y}$$

Pre-filtering

- No aliasing due to pre-filtering
- Loss of high frequency information
- Pre-filtering is used in some applications because aliasing is unpredictable but the information loss is predictable.

Perfect Reconstruction Filter

$$\begin{aligned} \mathbf{f}_{s}(x,y) &= \sum_{m,n=-\infty}^{\infty} f(m\Delta x, n\Delta y)\delta(x - m\Delta x, y - n\Delta y) \\ \Rightarrow \quad F_{s}(\xi_{1},\xi_{2}) &= \frac{1}{\Delta x\Delta y} \sum_{k,l=-\infty}^{\infty} F(\xi_{1} - k\frac{1}{\Delta x}, \xi_{2} - l\frac{1}{\Delta y}) \\ \mathbf{f}_{s}(\xi_{1},\xi_{2}) &= \begin{cases} \Delta x\Delta y & |\xi_{1}| < \frac{1}{2\Delta x}, |\xi_{2}| < \frac{1}{2\Delta y} \\ 0 & \text{otherwise} \end{cases} \\ \Rightarrow \quad h(x,y) &= \operatorname{sinc}(\frac{x}{\Delta x})\operatorname{sinc}(\frac{y}{\Delta y}) \\ f(x,y) &= f_{s}(x,y) * h(x,y) \\ &= \sum_{m,n=-\infty}^{\infty} f(m\Delta x, n\Delta y)\delta(x - m\Delta x, y - n\Delta y) * \operatorname{sinc}(\frac{x}{\Delta x})\operatorname{sinc}(\frac{y}{\Delta y}) \\ &= \sum_{m,n=-\infty}^{\infty} f(m\Delta x, n\Delta y)\operatorname{sinc}(\frac{x - m\Delta x}{\Delta x})\operatorname{sinc}(\frac{y - n\Delta y}{\Delta y}) \end{aligned}$$

Nonrectangular Grid Sampling and Interlacing

Sampling resolution can be reduced by a factor of 2 by using quincunx sampling lattice

Nonrectangular Grid Sampling and Interlacing

Interlacing scan in TV system

Practical Limitations in Sampling

and Reconstruction

- Real image signal not bandlimited
 aliasing is inevitable
- Low-pass filtering before sampling
 - can alleviate aliasing
 - but attenuate higher spatial frequency information (image blurring)
- Non-ideal reconstruction filter (display or printer)

Example of Aliasing

- Bandwidth of the original signal = 2
- Nyquist sampling rate

$$\frac{1}{\Delta x} > 2 \cdot 2 = 4, \quad \Delta x < \frac{1}{4}$$

- By mistake, one assume that the bandwidth is less than 1.5 and use the sampling distance $\Delta x = \frac{1}{3}$
- Reconstruction filter yields frequencies higher than 1.5
- Aliasing causes totally wrong reconstruction

Example of Aliasing (Cont'd)

Cocentric circles

High

Low

Sampling frequency

Low-pass Filtering

 Aliasing can be alleviated by lowpassing original image before sampling

With pre-filtering

Without pre-filtering

Practical Interpolation Filter

- Ideal filter sinc function
 - not implemetable
 - infinite duration
 - negative lobe
- Repetition or zero-order holding (ZOH)
- Linear interpolation or firstorder holding (FOH)
- Quadratic
- Cubic spline

Sampled signal ZOH FOH

Gaussian

Practical Interpolation Filter

less aliasing, more information loss

ZOH vs FOH

ZOH vs FOH

Practical Interpolation Filter

- FOH is a good compromise between information loss and aliasing suppression
- 2D FOH bilinear interpolation

Example – Step 1. Sampling

FIGURE 2.19 A 1024 \times 1024, 8-bit image subsampled down to size 32 \times 32 pixels. The number of allowable gray levels was kept at 256.

Example – Step 2. Interpolation (ZOH)

FIGURE 2.20 (a) 1024×1024 , 8-bit image. (b) 512×512 image resampled into 1024×1024 pixels by row and column duplication. (c) through (f) 256×256 , 128×128 , 64×64 , and 32×32 images resampled into 1024×1024 pixels.

Example –ZOH vs. FOH

FIGURE 2.25 Top row: images zoomed from 128×128 , 64×64 , and 32×32 pixels to 1024×1024 pixels, using nearest neighbor gray-level interpolation. Bottom row: same sequence, but using bilinear interpolation.

- Resolution conversion from (M_1, N_1) to (M_2, N_2)
 - M_1/M_2 and N_1/N_2 can be arbitrary
- 1. Digital-to-Analog conversion (e.g. bilinear interpolation)

- Resolution conversion from (M_1, N_1) to (M_2, N_2)
 - M_1/M_2 and N_1/N_2 can be arbitrary
- 1. Digital-to-Analog conversion (e.g. bilinear interpolation)

- Resolution conversion from (M_1, N_1) to (M_2, N_2)
 - M_1/M_2 and N_1/N_2 can be arbitrary
- 1. Digital-to-Analog conversion (e.g. bilinear interpolation)

Shrinking Case $M_1/M_2 = N_1/N_2 = 3/2$

- Resolution conversion from (M_1, N_1) to (M_2, N_2)
 - M_1/M_2 and N_1/N_2 can be arbitrary
- 1. Digital-to-Analog conversion (e.g. bilinear interpolation)
- 2. Resampling

Moiré Effect

- Moiré pattern arises if
 - image contains periodicities that are close to half the sampling frequencies, and
 - reconstruction filter cutoff extends beyond the ideal low-pass filter cutoff
 - e.g. small display spot size => large cutoff frequency

Moiré Effect – 1D example

Amplitude modulated signal

Moiré Effect – 2D Example

corrugated tin loop

FIGURE 2.24 Illustration of the Moiré pattern effect.