Digital Signal Processing

Chap 3. The *z*-Transform

Chang-Su Kim

Definitions

z-Transform

• *z*-Transform

$$X(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n}$$

• Ex) $x[n] = \delta[n+1] + 2\delta[n] - 3\delta[n-2]$

$$\Rightarrow \quad X(z) = z + 2 - 3z^{-2}$$

- z-Transform is simply an alternative representation of a signal
 - The coefficient of z^{-n} is the signal value x[n]

z-Transform

• Ex) *z*-transform pair

$$\frac{1}{2^n}u[n] \longleftrightarrow \frac{1}{1-\frac{1}{2}z^{-1}}, \qquad |z| > \frac{1}{2} \qquad \text{ROC} \text{ (region of convergence)}$$

z-Transform is an extension of DTFT

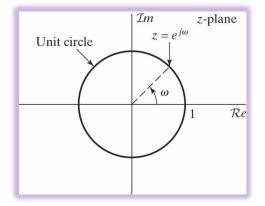
• *z*-Transform

$$X(z) = \sum_{n = -\infty}^{\infty} x[n] z^{-n}$$

• DTFT

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

• *z*-Transform vs. DTFT - DTFT of $x[n] = X(z)|_{z=e^{j\omega}}$



z-Transform and DTFT

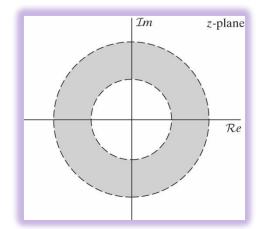
$$X(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n}$$

• If
$$z = re^{j\omega}$$

$$X(z) = \sum_{n=-\infty}^{\infty} (x[n]r^{-n})e^{-j\omega n}$$

which is DTFT of
$$x[n]r^{-n}$$
.

- Convergence of DTFT
 - Is x[n] absolutely summable?
- Convergence of z-Transform
 - Is $x[n]r^{-n}$ absolutely summable?
 - Therefore, the region of convergence will be a ring shape.



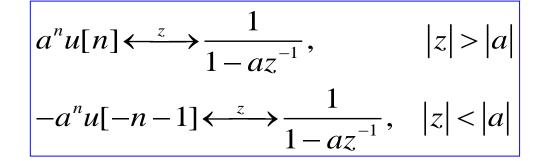
Why do we need the extension?

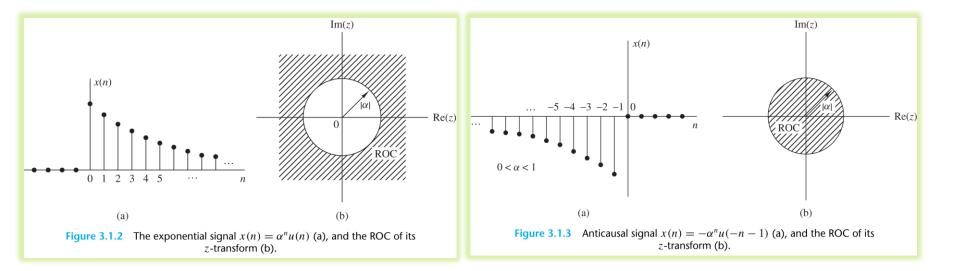
• Consider the DTFT pair

$$a^n u[n] \longleftrightarrow \frac{1}{1 - ae^{-jw}} \qquad |a| < 1$$

What happens if $|a| \ge 1$?

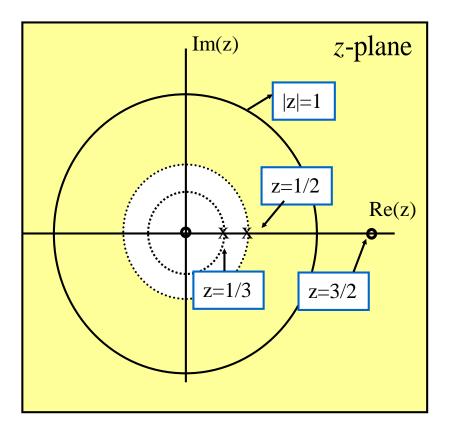
- z-Transform pair $a^{n}u[n] \xleftarrow{z} \frac{1}{1-az^{-1}}, \qquad |z| > |a|$ ROC (region of convergence)
- z-Transform can be applied to a broader class of signals than DTFT
 - It is useful in studying a broader class of systems
 - It is used to analyze the causality and stability of a system





Ex)
$$x[n] = 7(\frac{1}{3})^n u[n] - 6(\frac{1}{2})^n u[n]$$

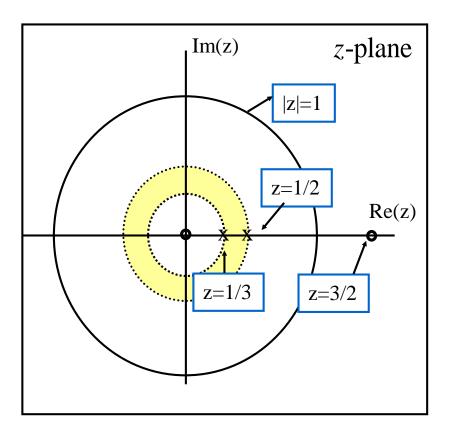
 $X(z) = \frac{z(z - \frac{3}{2})}{(z - \frac{1}{3})(z - \frac{1}{2})}, \quad |z| > \frac{1}{2}$



There are other sequences, which generate the same X(z) but with different ROC's

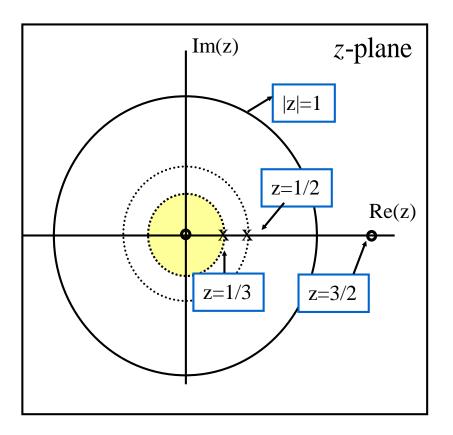
Ex)
$$x[n] = ?$$

 $X(z) = \frac{z(z - \frac{3}{2})}{(z - \frac{1}{3})(z - \frac{1}{2})}, \quad \frac{1}{3} < |z| < \frac{1}{2}$



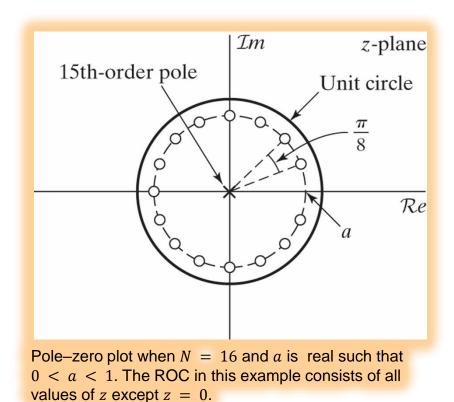
Ex)
$$x[n] = ?$$

 $X(z) = \frac{z(z - \frac{3}{2})}{(z - \frac{1}{3})(z - \frac{1}{2})}, |z| < \frac{1}{3}$



Another Example

•
$$x[n] = \begin{cases} a^n, & 0 \le n \le N-1, \\ 0, & \text{otherwise.} \end{cases}$$

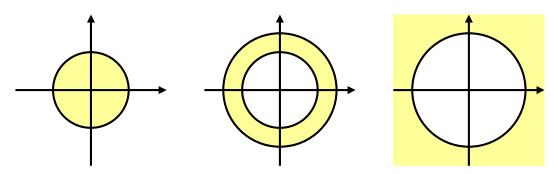


Common *z*-Transform Pairs

TABLE 3.1 SOME COMMON z-TRANSFORM PAIRS				
Sequence	Transform	ROC		
1. δ[<i>n</i>]	1	All z		
2. <i>u</i> [<i>n</i>]	$\frac{\frac{1}{1-z^{-1}}}{\frac{1}{1-z^{-1}}}$	z > 1		
3. $-u[-n-1]$		z < 1		
4. $\delta[n - m]$	z^{-m}	All z except 0 (if $m > 0$) or ∞ (if $m < 0$)		
5. $a^{n}u[n]$	$\frac{\frac{1}{1 - az^{-1}}}{\frac{1}{1 - az^{-1}}}$	z > a		
6. $-a^n u[-n-1]$	$\frac{1}{1-az^{-1}}$	z < a		
7. na ⁿ u[n]	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a		
8. $-na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a		
9. $\cos(\omega_0 n)u[n]$	$\frac{1 - \cos(\omega_0) z^{-1}}{1 - 2\cos(\omega_0) z^{-1} + z^{-2}}$	z > 1		
10. $\sin(\omega_0 n)u[n]$	$\frac{\sin(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$	z > 1		
11. $r^n \cos(\omega_0 n) u[n]$	$\frac{1 - r\cos(\omega_0)z^{-1}}{1 - 2r\cos(\omega_0)z^{-1} + r^2z^{-2}}$	z > r		
12. $r^n \sin(\omega_0 n) u[n]$	$\frac{r\sin(\omega_0)z^{-1}}{1 - 2r\cos(\omega_0)z^{-1} + r^2z^{-2}}$	z > r		
13. $\begin{cases} a^n, & 0 \le n \le N - 1, \\ 0, & \text{otherwise} \end{cases}$	$\frac{1-a^N z^{-N}}{1-az^{-1}}$	z > 0		

Properties on ROC

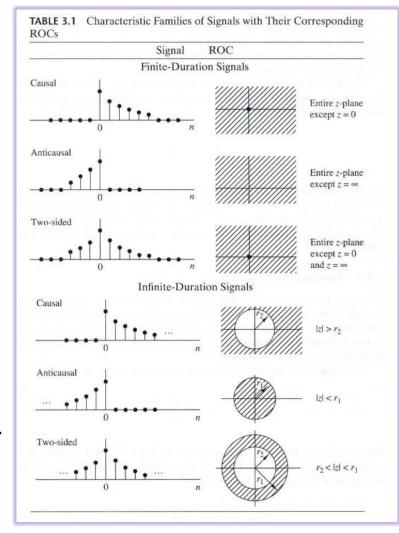
- ROC of *X*(*z*) consists of a single ring in the *z*-plane centered at the origin
 - Proof: Skipped. Refer to any textbook on complex analysis.



- ROC does not contain any poles.
- *x*[*n*] has the Fourier transform, if ROC includes the unit circle

Properties on ROC

- Suppose that X(z) is rational.
 - x[n] is a finite duration sequence
 ⇒ ROC is the entire z-plane
 except possibly z = 0 or z = ∞.
 - x[n] is right-sided
 - \Rightarrow ROC is the region in the z-plane outside the outermost pole.
 - x[n] is left-sided ⇒ ROC is the region inside the innermost nonzero pole.
 - x[n] is two-sided
 - \Rightarrow ROC is a ring, bounded on the interior and the exterior by poles.
- ROC is a connected region

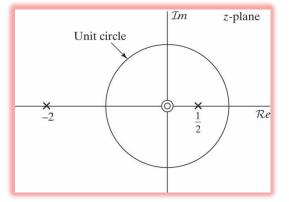


Some signals don't have *z*-transforms

•
$$x[n] = \frac{1}{2^n}u[n] - \left(-\frac{1}{3}\right)^n u[-n-1].$$

Analysis of LTI Systems in z-Domain

- Causality
 - ROC of the system function is the exterior of a circle



• Stability

– ROC contains the unit circle

• A causal system is stable if all poles are inside the unit circle

Inverse *z***-Transforms**

Inverse *z*-Transform

$$x[n] = \frac{1}{2\pi j} \oint_C X(z) z^{n-1} dz$$

- C is any closed contour within the ROC of the z-transform
- Its proper evaluation requires some knowledge on complex integral
 - For example, you may refer to R. V. Churchill and J. W. Brown, *Complex Variables and Applications*, McGraw-Hill
- We do not use this formula. Instead, we decompose X(z) into a number of terms, each of which can be inverse transformed using tables or partial fractions

Ex 1) Determine the causal signal x[n], whose z-transform is

$$X(z) = \frac{1}{1 - 1.5z^{-1} + 0.5z^{-2}}$$

Ex 2) Determine the causal signal x[n], whose z-transform is

$$X(z) = \frac{1 + z^{-1}}{1 - z^{-1} + 0.5z^{-2}}$$

Ex 3) Determine the causal signal x[n], whose z-transform is

$$X(z) = \frac{1}{(1+z^{-1})(1-z^{-1})^2}$$

Ex 4) Determine the causal signal x[n], whose z-transform is

$$X(z) = \frac{1 + 2z^{-1} + z^{-2}}{1 - \frac{3}{2}z^{-1} + \frac{1}{2}z^{-2}}$$

Inverse *z*-Transform by Power Series Expansion

Ex 5) Determine the signal x[n], whose z-transform is

$$X(z) = \log(1 + az^{-1}), \qquad |z| > |a|.$$

Properties

• Linearity

If
$$x_1[n] \Leftrightarrow X_1(z)$$
, $\operatorname{ROC}=R_{x_1}$
 $x_2[n] \Leftrightarrow X_2(z)$, $\operatorname{ROC}=R_{x_2}$

Then

 $a x_1[n] + b x_2[n] \Leftrightarrow a X_1(z) + b X_2(z),$ ROC contains $R_{x_1} \cap R_{x_2}$

- Ex) Determine the *z*-transforms of $\cos(\omega_0 n)u[n]$ and $\sin(\omega_0 n)u[n]$
- Ex) Determine the *z*-transform of $x[n] = a^n(u[n] u[n N]).$

• Time shifting

$$x[n-k] \iff z^{-k}X(z),$$

 $- ROC = R_{\chi}$

(except for the possible addition or deletion of z = 0 or $z = \infty$)

Ex) Determine the inverse *z*-transform of

$$X(z) = \frac{1}{z - \frac{1}{4}} |z| > \frac{1}{4}$$

• Scaling in the *z*-domain

 $a^n x[n] \iff X(z/a), \quad \mathsf{ROC}=|a|R_x.$

Ex) Determine the *z*-transform of $x[n] = r^n \cos(\omega_0 n)u[n]$

• Differentiation in the *z*-domain

 $nx[n] \Leftrightarrow -z \frac{dX(z)}{dz}, \quad \text{ROC}=R_x.$

- Ex) Determine the *z*-transform of $na^nu[n]$
- Ex) Determine the signal x[n] corresponding to $X(z) = \log(1 + az^{-1}), |z| > |a|$

• Time reversal

$$x[-n] \Leftrightarrow X(\frac{1}{z}), \quad \text{ROC} = \frac{1}{R_{\chi}}.$$

Ex) Determine the *z*-transform of $a^{-n}u[-n]$

Convolution becomes multiplication

 $x_1[n] * x_2[n] \Leftrightarrow X_1(z)X_2(z),$ ROC contains $R_{x_1} \cap R_{x_2}$

Ex) Compute the convolution of $x_1[n] = \delta[n] + 2\delta[n-1] + \delta[n-2]$ and $x_2[n] = \delta[n] - \delta[n-1].$

TABLE 3.2	SOME z-TRANSFORM PROPERTIES				
Property Number	Section Reference	Sequence	Transform	ROC	
		<i>x</i> [<i>n</i>]	X(z)	R_{X}	
		$x_1[n]$	$X_1(z)$	R_{x_1}	
		$x_2[n]$	$X_2(z)$	R_{x_2}	
1	3.4.1	$ax_1[n] + bx_2[n]$	$aX_1(z) + bX_2(z)$	Contains $R_{x_1} \cap R_{x_2}$	
2	3.4.2	$x[n-n_0]$	$z^{-n_0}X(z)$	R_x , except for the possible addition or deletion of the origin or ∞	
3	3.4.3	$z_0^n x[n]$	$X(z/z_0)$	$ z_0 R_x$	
4	3.4.4	nx[n]	$\frac{-z\frac{dX(z)}{dz}}{X^*(z^*)}$	R_x	
5	3.4.5	$x^*[n]$	$X^*(z^*)^{dz}$	R_{X}	
6		$\mathcal{R}e\{x[n]\}$	$\frac{1}{2}[X(z) + X^*(z^*)]$	Contains R_x	
7		$\mathcal{I}m\{x[n]\}$	$\frac{1}{2j}[X(z) - X^*(z^*)]$	Contains R_x	
8	3.4.6	$x^{*}[-n]$	$X^{2}(1/z^*)$	$1/R_x$	
9	3.4.7	$x_1[n] * x_2[n]$	$X_1(z)X_2(z)$	Contains $R_{x_1} \cap R_{x_2}$	

z-Transform and LTI Systems

System Function

 A system function is the z-transform of an impulse response

$$H(z) = \sum_{n=-\infty}^{\infty} h[n] z^{-n} = \frac{Y(z)}{X(z)}$$

• If the system is given by CCDE

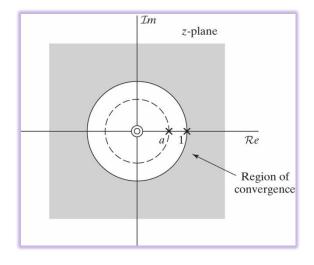
$$\sum_{k=0}^{N} a_{k} y[n-k] = \sum_{k=0}^{M} b_{k} x[n-k]$$

then

$$H(z) = \frac{b_0 + b_1 z^{-1} + \dots + b_M z^{-M}}{a_0 + a_1 z^{-1} + \dots + a_N z^{-N}}$$

Example

• $h[n] = a^n u[n]$ and x[n] = Au[n].



Example

• y[n] = ay[n-1] + x[n].

• We will see more applications of the ztransform in Chapter 5.

Analysis of LTI Systems in z-Domain

Ex) An LTI system is characterized by the system function

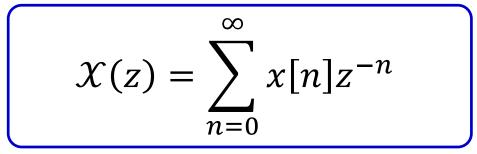
$$H(z) = \frac{1}{1 - 0.5z^{-1}} + \frac{2}{1 - 3z^{-1}}.$$

Specify the ROC of H(z) and determine h[n] for the following conditions

- a. The system is stable
- b. The system is causal

Unilateral *z***-Transform**

Unilateral *z*-Transform and Its Properties



•
$$y[n] = x[n-1]$$

 $\Leftrightarrow \mathcal{Y}(z) = x[-1] + z^{-1}\mathcal{X}(z)$
• $y[n] = x[n-2]$
 $\Leftrightarrow \mathcal{Y}(z) = x[-2] + x[-1]z^{-1} + z^{-2}\mathcal{X}(z)$

and so forth

Example

y[n] - ay[n - 1] = x[n] and x[n] = u[n].

- Note that CCDE describes an LTI system only if we assume initial rest conditions.
- But, in this example, we assume $y[-1] \neq 0$.

