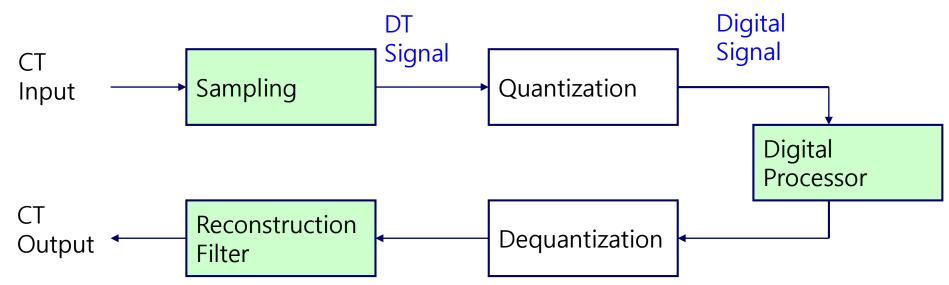
Digital Signal Processing

Chap 4. Sampling of Continuous-Time Signals

Chang-Su Kim

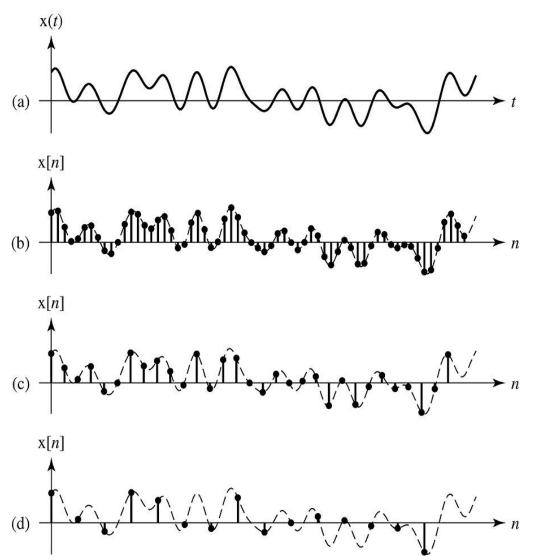
Digital Processing of Continuous-Time Signals

- Digital processing of a CT signal involves three basic steps
 - 1. Conversion of the CT signal into a DT signal
 - 2. Processing of the DT signal
 - 3. Conversion of the processed DT signal back into a CT signal



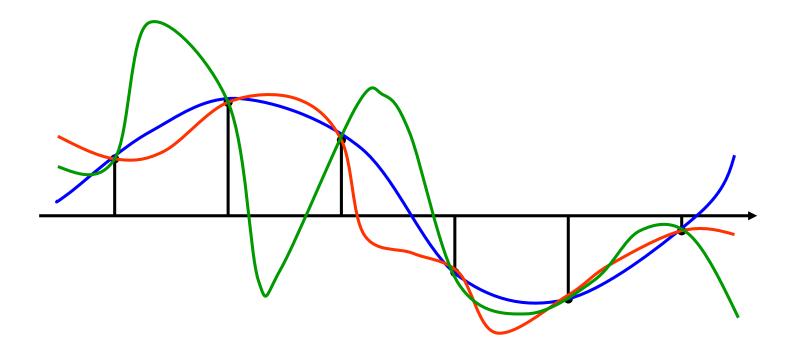
Sampling

Sampling



- Sampling is a procedure to extract a DT signal from a CT signals
- (b), (c), (d) are obtained by sampling (a)
- Is (b) enough to represent
 (a)?
- What is the adequate sampling rate to represent a given CT signal without information loss?

In general, DT signal cannot represent CT signal perfectly



Are these sample enough to reconstruct the original blue curve?

Continuous-Time Fourier Transform

- CTFT Formulae
 - Forward transform

$$X(j\Omega) = \int_{-\infty}^{\infty} x(t) e^{-j\Omega t} dt$$

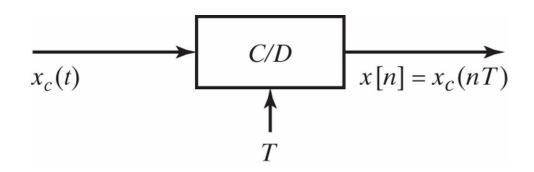
Inverse transform

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\Omega) e^{j\Omega t} d\Omega$$

• We will use a number of properties of CTFT without proofs

- They are studied in the course Signals and Systems

Periodic Sampling



• C/D (continuous-time to discrete-time) CONVERTER

•
$$x[n] = x_c(nT), -\infty < n < \infty$$
.

-T: sampling period

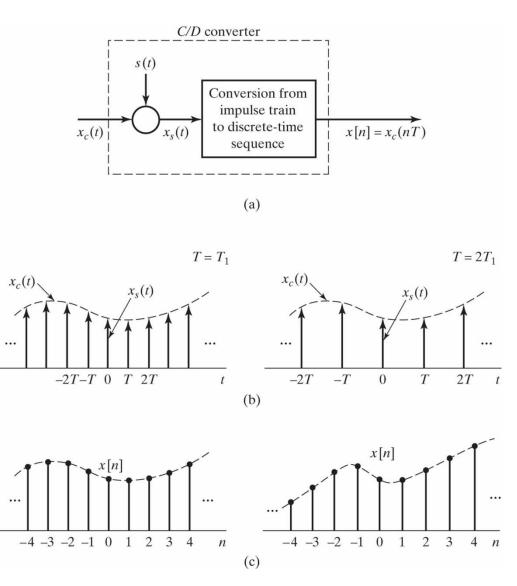
$$-\Omega_s = \frac{2\pi}{T}$$
 (or $f_s = \frac{1}{T}$) : sampling frequency

Periodic Sampling

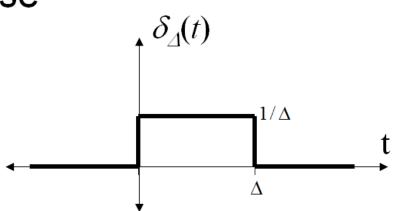
 Conceptually, it is easier to introduce an impulse train for the C/D conversion

•
$$s(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT)$$

- $x_s(t) = x_c(t)s(t) =$ $\sum_{n=-\infty}^{\infty} x_c(nT)\delta(t - nT)$
- x_s(t) and x[n] have the same information
 - Given $x_s(t)$, we can make x[n].
 - Given x[n], we can make $x_s(t)$.

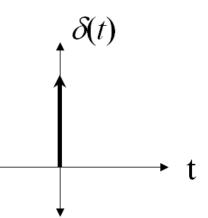


$$\delta_{\Delta}(t) = \frac{du_{\Delta}(t)}{dt} = \begin{cases} \frac{1}{\Delta}, & 0 \le t < \Delta\\ 0, & \text{otherwise} \end{cases}$$



• Unit Impulse:

$$\delta(t) = \lim_{\Delta \to 0} \delta_{\Delta}(t) = \begin{cases} \infty, & t = 0\\ 0, & t \neq 0 \end{cases}$$
$$\int_{-a}^{b} \delta(t) dt = 1 \quad \text{for any } a > 0 \text{ and } b > 0.$$

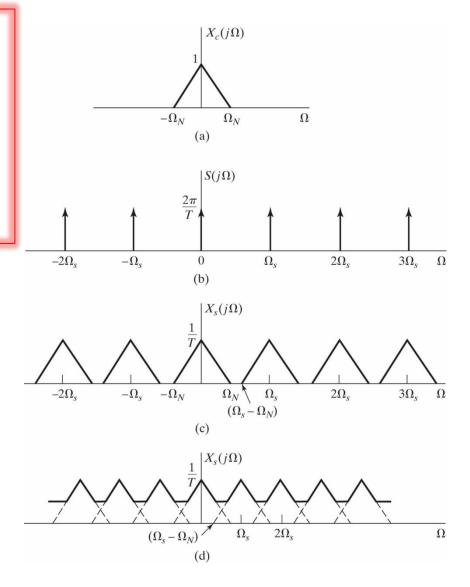


Frequency-Domain Representation of Sampling

•
$$S(j\Omega) = \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta(\Omega - k\Omega_s)$$

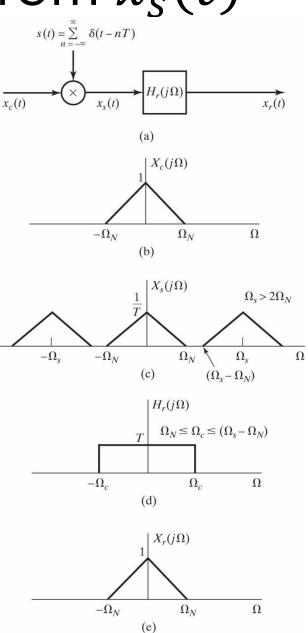
•
$$X_s(j\Omega) = \frac{1}{2\pi} X_c(j\Omega) * S(j\Omega)$$

= $\frac{1}{T} \sum_{k=-\infty}^{\infty} X_c(j(\Omega - k\Omega_s))$



Recovery of $x_c(t)$ from $x_s(t)$

- If you can recover $x_c(t)$ from $x_s(t)$, you can recover $x_c(t)$ from x[n].
- Recovery is possible through an ideal low-pass filter when $\Omega_s > 2\Omega_N$.



Nyquist-Shannon Sampling Theorem

Let $x_c(t)$ be a band-limited signal with $X_c(j\Omega) = 0$ for $|\Omega| \ge \Omega_N$. Then $x_c(t)$ is uniquely determined by its samples $x[n] = x_c(nT), -\infty < n < \infty$, if 2π

$$\Omega_s = \frac{2\pi}{T} \ge 2\Omega_N.$$

- $2\Omega_N$ is called the Nyquist rate.
- Under certain conditions, a CT signal can be completely represented by and recoverable from samples
- A low-pass signal can be reconstructed from samples, if the sampling rate is high enough. Because it is a low-pass signal, the change between two close samples is constrained (or expected).

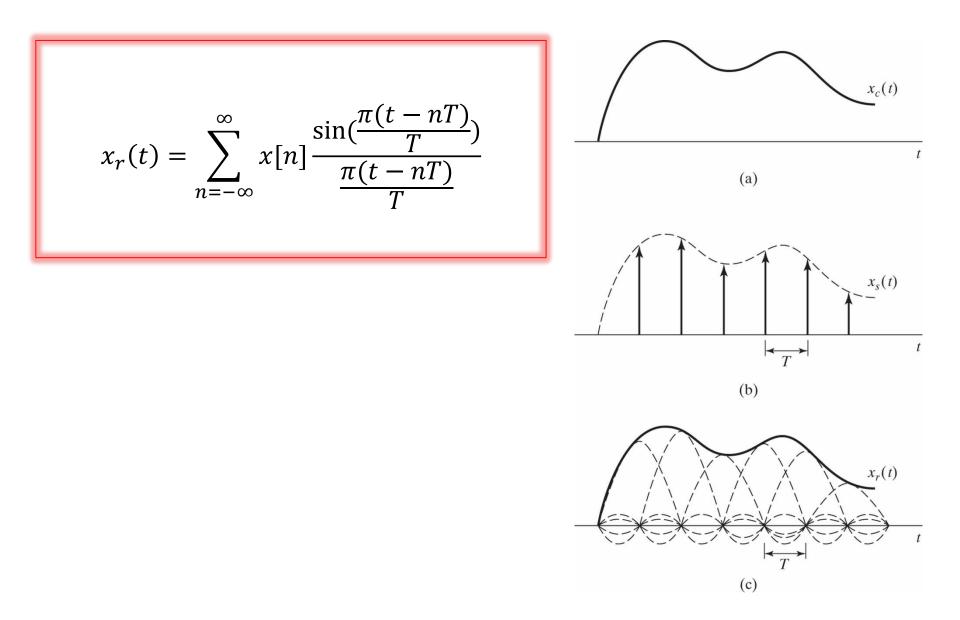
Recovery of $x_c(t)$ from $x_s(t)$

•
$$h_r(t) = \frac{\sin(\frac{\pi t}{T})}{\frac{\pi t}{T}}$$

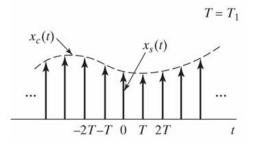
• $x_s(t) = \sum_{n=-\infty}^{\infty} x[n] \delta(t-nT)$
• $x_r(t) = \sum_{n=-\infty}^{\infty} x[n] \frac{\sin(\frac{\pi (t-nT)}{T})}{\frac{\pi (t-nT)}{T}}$
(a)
(a)
 $\frac{1}{\frac{\pi t}{T}} \frac{\pi}{T}$
(b)
(b)

(c)

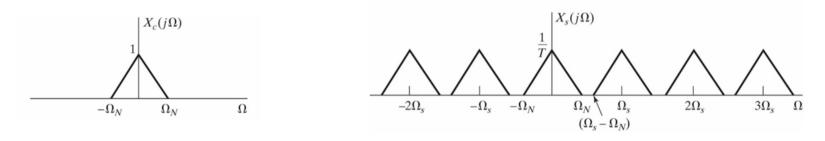
Recovery of $x_c(t)$ from x[n]



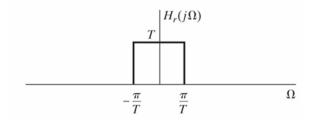
• $s(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT), \ x_s(t) = x_c(t)s(t)$

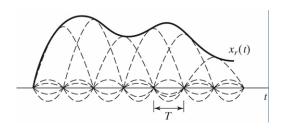


• $X_s(j\Omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c(j(\Omega - k\Omega_s))$



• $X_r(j\Omega) = X_s(j\Omega)H_r(j\Omega), \ x_r(t) = \sum_{n=-\infty}^{\infty} x[n] \frac{\sin(\frac{\pi(t-nT)}{T})}{\frac{\pi(t-nT)}{T}}$





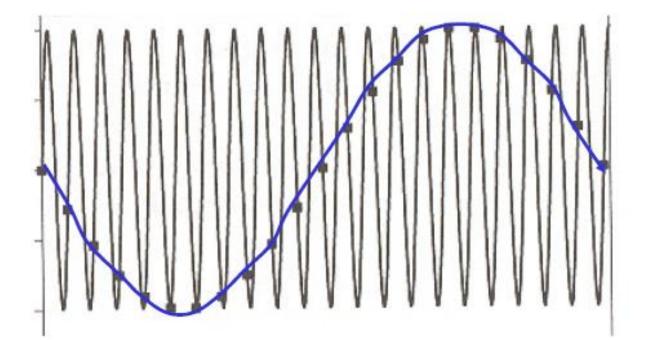
Frequency-Domain Relationship between x[n] and $x_s(t)$

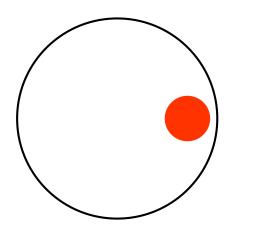
• Relationship between $X(e^{j\omega})$ and $X_s(j\Omega)$

$$X(e^{j\omega}) = X_s\left(j\frac{\omega}{T}\right)$$
$$X_s(j\Omega) = X(e^{j\Omega T})$$

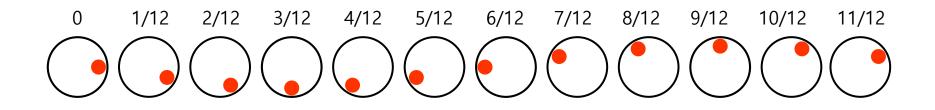
• Recall that $X(e^{j\omega})$ is always periodic

• Undersampling: sampling rate is less than Nyquist rate



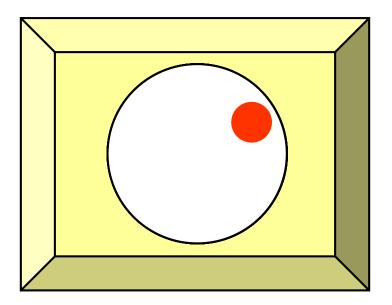


- Rotating disk
 - 1 rotation/second
- To avoid aliasing, it should be motion-pictured with at least 2 frames/s.

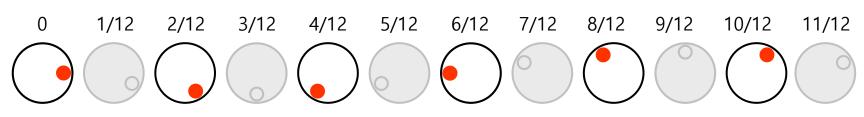


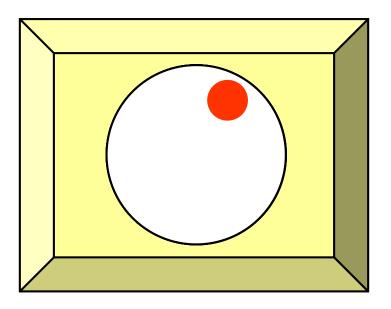
• 12 frames/s

0 1/12 2/12 3/12 4/12 5/12 6/12 7/12 8/12 9/12 10/12 11/12

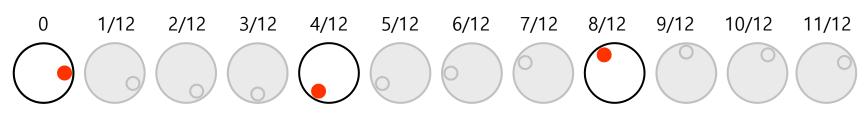


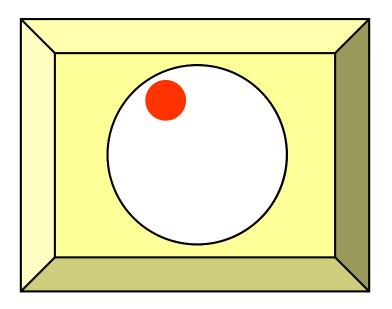
• 6 frames/s



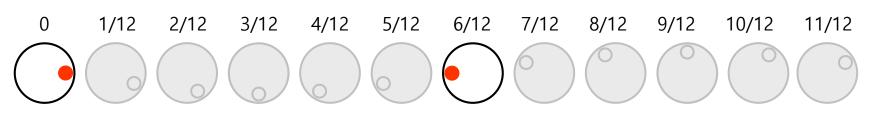


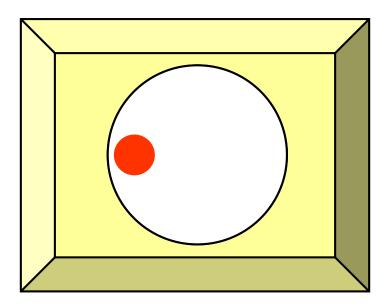
• 3 frames/s



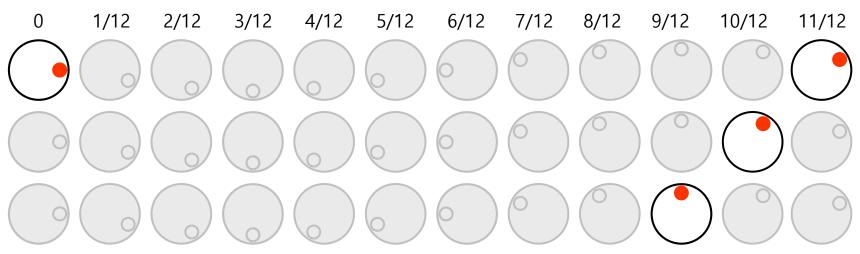


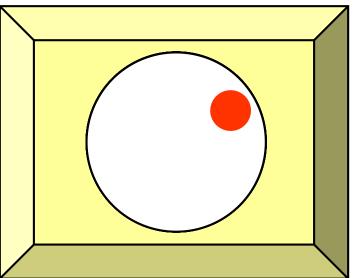
• 2 frames/s





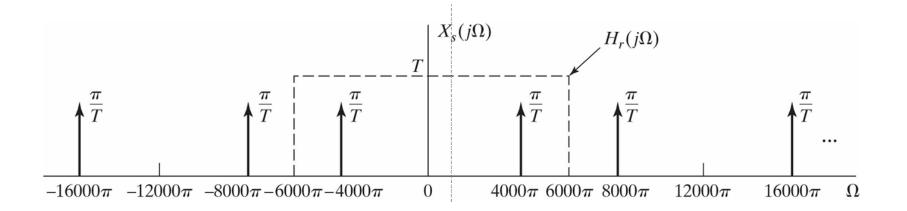
• 12/11 = 1.09 frames/s





Examples

• $x_c(t) = \cos(4000\pi t), T = 1/6000.$



• $1 \leftrightarrow 2\pi\delta(\Omega)$

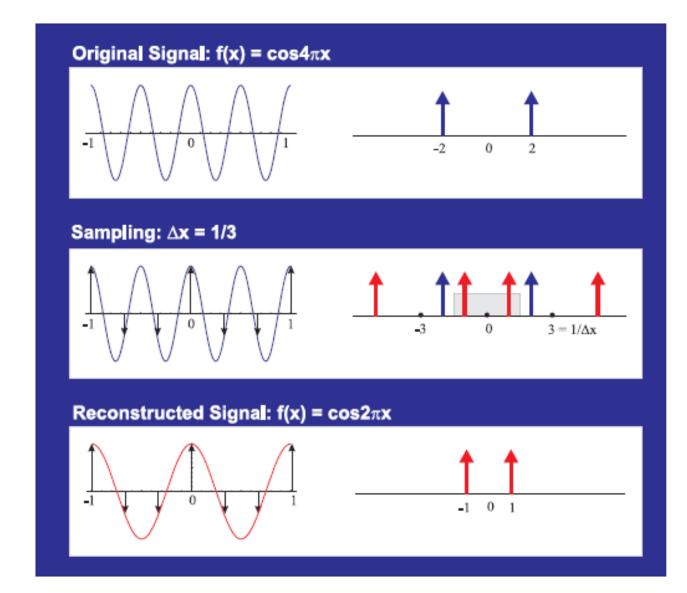
• $\cos(\Omega_0 t) \leftrightarrow \pi(\delta(\Omega - \Omega_0) + \delta(\Omega + \Omega_0))$

•
$$\sin(\Omega_0 t) \leftrightarrow \frac{\pi}{j} (\delta(\Omega - \Omega_0) - \delta(\Omega + \Omega_0))$$

Examples

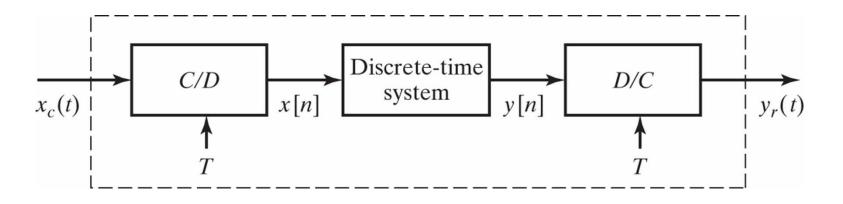
• $x_c(t) = \cos(16000\pi t), T = 1/6000.$

Examples



DT Processing of CT Signals

C/D and D/C conversions



• C/D

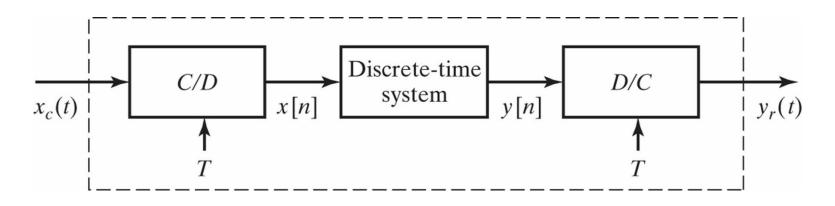
$$X(e^{j\omega}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c \left(j \left(\frac{\omega}{T} - \frac{2\pi k}{T} \right) \right)$$

• D/C

$$Y_r(j\Omega) = H_r(j\Omega)Y(e^{j\Omega T}) = \begin{cases} TY(e^{j\Omega T}), & |\Omega| < \frac{\pi}{T} \\ 0, & \text{Otherwise} \end{cases}$$

Relationship between x[n] and $x_s(t)$ $X(e^{j\omega}) = X_s(j\frac{\omega}{T}),$ $X_s(j\Omega) = X(e^{j\Omega T})$

Overall System

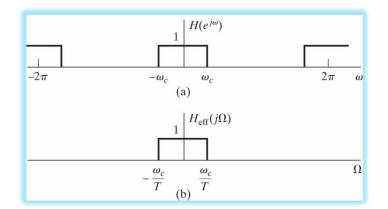


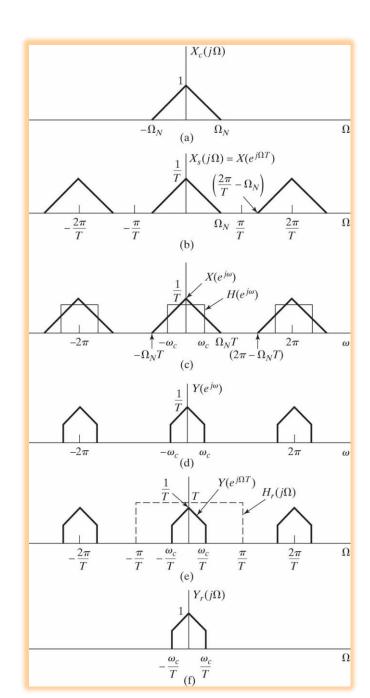
- Effective Frequency Response $H_{\rm eff}(j\Omega) = \begin{cases} H(e^{j\Omega T}), & |\Omega| < \frac{\pi}{T} \\ 0, & \text{Otherwise} \end{cases}$
- Assumptions
 - $x_c(t)$ is band-limited
 - $-\frac{2\pi}{T}$ satisfies the Nyquist rate

Relationship between x[n] and $x_s(t)$

$$X(e^{j\omega}) = X_s\left(j\frac{\omega}{T}\right),$$
$$X_s(j\Omega) = X(e^{j\Omega T})$$

• $H(e^{j\omega}) = \begin{cases} 1, & |\omega| < \omega_c \\ 0, & \omega_c < |\omega| < \pi \end{cases}$

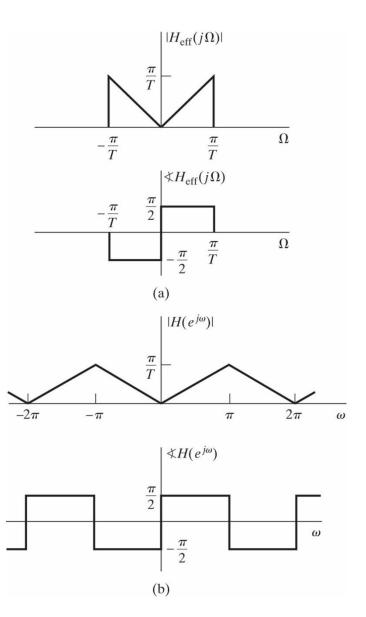




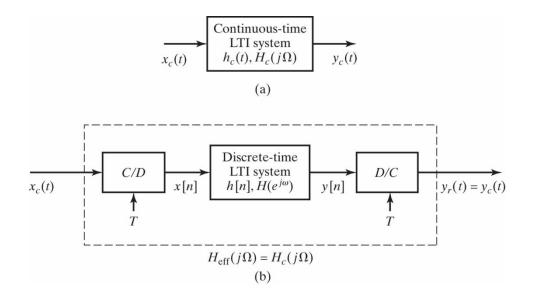
Example 2

•
$$y_c(t) = \frac{d}{dt} x_c(t)$$

 $\Rightarrow h[n] = \begin{cases} 0, & n = 0\\ \frac{(-1)^n}{nT}, & n \neq 0 \end{cases}$



Impulse Invariance

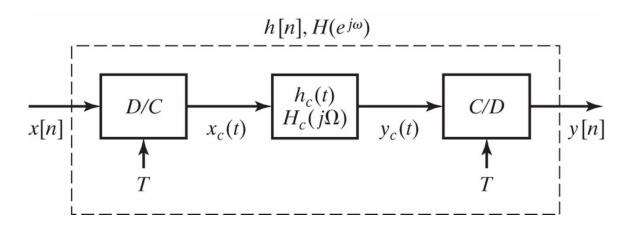


- $h[n] = Th_c(nT)$
- Example

– Ideal lowpass filter h[n] with cutoff frequency ω_c

CT Processing of DT Signals

CT Processing of DT Signals



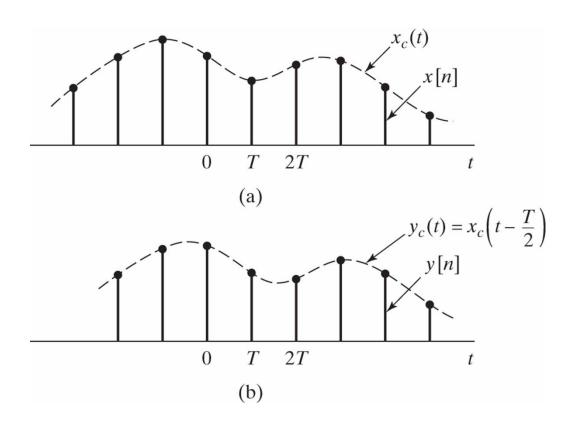
- It is rarely used, but provides a useful interpretation of some DT systems
- Main results

$$H(e^{j\omega}) = H_c\left(j\frac{\omega}{T}\right), \qquad |\omega| < \pi$$
$$H_c(j\Omega) = H(e^{j\Omega T}), \qquad |\Omega| < \frac{\pi}{T}.$$

Example – Fractional Delay

•
$$H(e^{j\omega}) = e^{-j\omega\Delta}, \ |\omega| < \pi$$

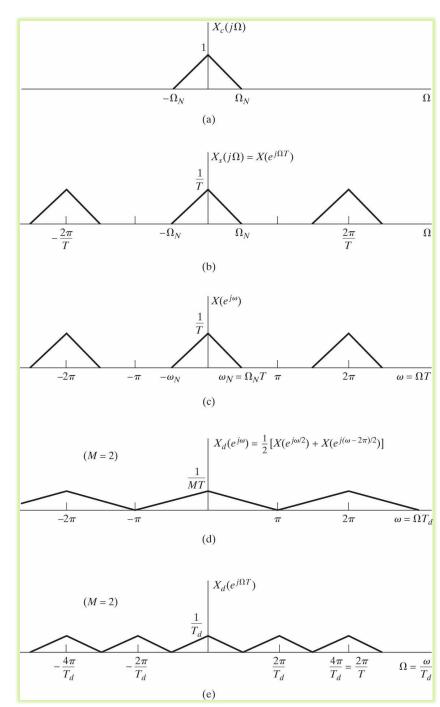
 $\implies h[n] = \frac{\sin \pi (n - \Delta)}{\pi (n - \Delta)}$



Changing Sampling Rate

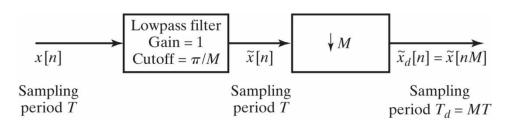
Reducing Sampling Rate
by an Integer Factor Msampling rate
compressorx[n]Mx[n] $x_d[n] = x[nM]$ Sampling
period TSampling
period $T_d = MT$

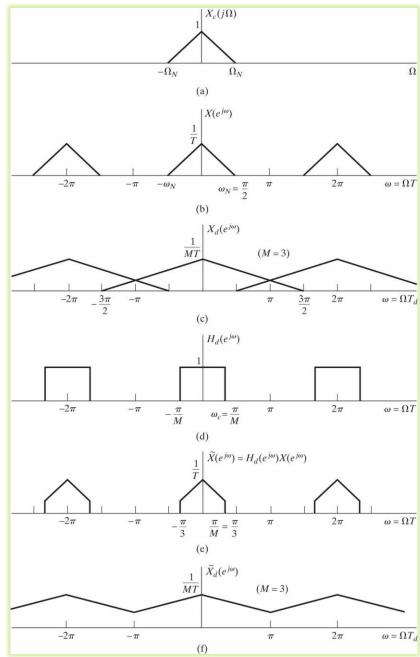
- Time domain $x_d[n] = x[nM]$
- Frequency domain $X_d(e^{j\omega}) = \frac{1}{M} \sum_{k=0}^{M-1} X(e^{j\left(\frac{\omega}{M} - \frac{2\pi k}{M}\right)})$



Reducing Sampling Rate by an Integer Factor *M*

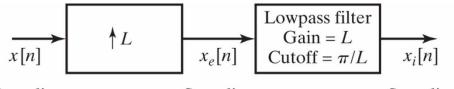
- To avoid aliasing, we need $- X(e^{j\omega}) = 0 \text{ if } \omega_N < |\omega| < \pi$ $- \omega_N < \frac{\pi}{M}$
- Anti-aliasing filter can be used





Increasing Sampling Rate by an Integer Factor L

sampling rate expander



Sampling period T

- Sampling period $T_i = T/L$
- Sampling

period $T_i = T/L$

Input and output ٠

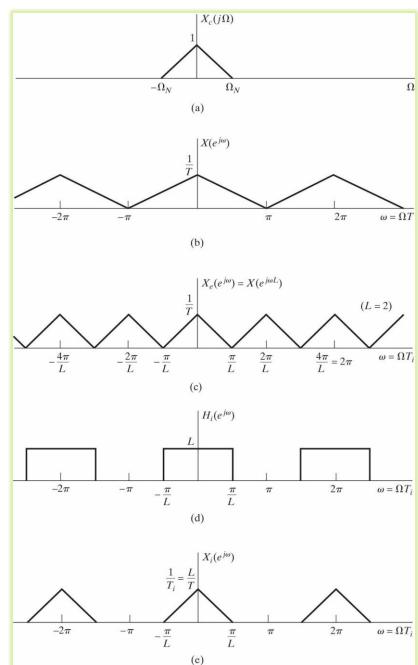
> $x[n] = x_c(nT)$ $x_i[n] = x_c \left(n \frac{T}{L} \right)$

Intermediate signal ٠

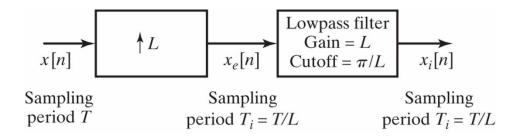
$$x_e[n] = \begin{cases} x[\frac{n}{L}] & \text{if } n \text{ is a multiple of } L \\ 0 & \text{otherwise} \end{cases}$$

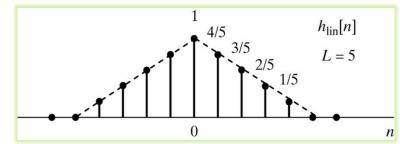
Output in terms of input ٠

$$x_i[n] = \sum_{k=-\infty}^{\infty} x[k] \frac{\sin \frac{\pi(n-kL)}{L}}{\frac{\pi(n-kL)}{L}}$$



Ideal and Linear Interpolation Filters



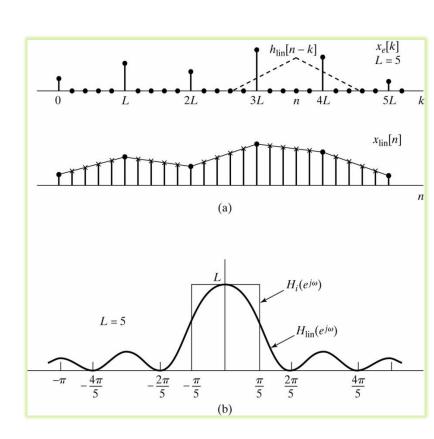


- $x_e[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-kL]$
- $x_i[n] = x_e[n] * h_i[n] = \sum_{k=-\infty}^{\infty} x[k]h_i[n-kL]$
- Ideal filter

$$h_i[n] = \frac{\sin\frac{\pi n}{L}}{\frac{\pi n}{L}}$$

• Linear filter

$$h_{\text{lin}}[n] = \begin{cases} 1 - \frac{|n|}{L}, & -L \le n \le L \\ 0, & \text{otherwise} \end{cases}$$



Changing Sampling Rate by a Noninteger Factor

