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Image Enhancement

▪ Objective
Make an image more suitable for a specific application

Problem oriented

Subjective evaluation

viewer is the ultimate judge

No general theory

Many trials and errors are involved to tune several 
parameters

▪ Spatial domain approaches
Direct manipulation of pixels in an image

▪ Frequency domain approaches
Modification of the Fourier transform of an image

▪ Combinations of both spatial and frequency 
approaches



Background

▪ Point processing

g(x,y) = T[ f(x,y) ]

Output pixel value depends only on the input pixel value at the same 
location

▪ Filtering (mask processing)

g(x,y) = T[ {f(u,v): (u,v) ∈ N(x,y)} ]

Output pixel value at (x,y) is determined by the values of the input 
pixels within the neighborhood of (x,y)

e.g.  g(x,y) = (f(x,y)+f(x+1,y))/2

T

Input Image

f(x,y)

Output Image 

g(x,y)

Enhancement System



Point Processing

▪ g(x,y) = T[ f(x,y) ]

▪ The enhancement system is fully described by 

s = T(r)

where s = g(x,y) and r = f(x,y)

Contrast stretching for 

medium gray levels

Gray-to-binary 

image converter



Filtering (Mask Processing)

▪ Mask is moved from pixel to pixel

▪ At each location, the mask values 

are multiplied by the corresponding 

pixel values, and then summed up 

▪ For example, 
g(x,y) = f(x,y) 

+ 4f(x-1,y) + 5f(x+1,y) 

+ 2f(x,y-1) + 3f(x,y+1)

▪ This is equivalent to the 

convolution of f(x,y) with a filter 

with the impulse response
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Basic Gray Level Transformations

▪ s = T(r)

▪ Lookup table 
implementation

e.g. negative transform

unsigned char T[255];

T[0] = 255;

T[1] = 254;

T[2] = 253;

…

T[254] = 1;

T[255] = 0;

for(x=0; x<width; x++)

for(y=0; y<height; y++)

output.pixel(x,y) =

T[input.pixel(x,y)];



Negative Transform

▪ s = L – 1 – r
L: # of gray levels (typically 256)



Log Transforms

▪ s = c log(1+r)
e.g. c=106.3 

[0,255] →[0,255]

enhance contrast on dark regions

expand dark pixel values

worsen contrast on bright regions

compress bright pixel values

▪ Inverse log (exponential) 

transform
compress dark pixel values and 

expand bright pixel values
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Log Transform of Fourier Transform

▪ Fourier spectrum with values r ∈ [0, 1.5x10^6]

▪ After log transform s = log(1+r),  s ∈ [0, 6.2]

▪ After linear scaling s’ = (255/6.2)s, s’ ∈ [0, 255]



Power-Law Transforms

▪ s = c rg

c =2551-g : 

[0,255] →[0,255]

▪ g<1: 

expand dark levels and 

compress bright levels

▪ g>1 :

expand bright levels 

and compress dark 

levels

▪ Varying g controls the 

amount of expansion and 

compression



Power-Law Transforms – Gamma Correction

▪ Non-linear characteristics of capture, printing and display devices

▪ CRT display

(intensity) = (voltage)2.5

Gamma correction: s= r1/2.5 = r0.4



Power-Law Transforms – Contrast Enhancement

▪ g<1: Expand dark gray levels

g=0.6

g=0.4 g=0.3



Power-Law Transforms – Contrast Enhancement

▪ g>1: Expand bright gray levels

g=3

g=4
g=5



Piecewise-Linear Transformations

▪ Piecewise-Linear Functions
Freedom of design

More user input



Piecewise-Linear Transformations

▪ Gray-level slicing



Piecewise-Linear Transformations

▪ Bit-plane slicing
Analysis of bit-plane data

Determining the resolution of quantizer

Bit-plane coding (JPEG2000)

Each bit-plane image is a binary image



Piecewise-Linear Transformations

▪ Bit-plane slicing



Histogram Processing

▪ Histograms are the basis for numerous spatial domain image 
processing techniques

Rough estimate of probability distribution of gray levels

Simple to compute

▪ Histogram

h(rk) = nk

rk: k-th gray level 

nk: the number of pixels in the image having gray level rk

▪ Normalized histogram

p(rk) = nk/n
n: the total number of pixels
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Histogram - Example

▪ In general, the uniform 
distribution of gray levels is 
desirable

high contrast

a great deal of details

high dynamic range



Histogram Equalization

▪ Enhance an input mage to have the gray level 

distribution, which is as uniform as possible

▪ Approach:
Continuous derivation → discrete approximation

▪ Problem definition
r : gray level of input image

Normalized to [0, 1]

Probability density function: pr(r)

Monotonic increasing function: s = T(r),     s ∈ [0,1]

Goal is to find the function T, such that 

ps(s) = 1 for all s ∈ [0,1]

i.e.  s is a uniform random variable

s

r(0,0)

(1,1)



Histogram Equalization



Histogram Equalization

▪ Continuous case

▪ Discrete approximation

▪ Example

0
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input gray level   k 0 1 2 3 4 5 6 7

normalized input  rk 0 1/7 2/7 3/7 4/7 5/7 6/7 1

histogram nk 1 3 2 7 8 3 0 1

normalized histogram nk/n 1/25 3/25 2/25 7/25 8/25 3/25 0 1/25

normalized output sk 1/25 4/25 6/25 13/25 21/25 24/25 24/25 1

denormalized output ok = sk x 7 7/25 28/25 42/25 91/25 147/25 168/25 168/25 7

output gray level  floor(ok) 0 1 1 3 5 6 6 7

m
0 1 2 3 4 5 6 7

output histogram nm 1 5 0 7 0 8 3 1



Histogram Equalization

▪ Does not provide the 

exactly uniform output
Discrete approximation

▪ But, spread the histogram 

automatically

input gray level 0 1 2 3 4 5 6 7

output gray level 0 1 1 3 5 6 6 7

input histogram 1 3 2 7 8 3 0 1

output histogram 1 5 0 7 0 8 3 1

input histogram

T

output histogram



Histogram Equalization



Histogram Matching (Specification)



Histogram Matching (Specification)

▪ Discrete Approximation



Histogram Matching 

(Specification)

▪ Failure of histogram equalization

two many zero pixels

discrete approximation error

Little contrast enhancement



Histogram Matching 

(Specification)

▪ Better result of histogram 

matching

Specifying target histogram

Many trials and errors

▪ Just illustration

Power transform with gamma 

< 1 may provide a similar or 

better result with less human 

inputs

▪ Useful

If we know general 

characteristics of input 

images and know what the 

target histogram should be 

by experience

The same target histogram is 

reused for many images 



Local Enhancement Using Histogram Equalization

▪ Global equalization may fail to enhance details over small areas in 

an image

The number of pixels in these areas may be too small to have effect on 

the global histogram

▪ Local Processing

1. For each pixel (x,y), define a neighborhood (e.g. 7x7 square)

2. Compute the local histogram and find the equalizing transform

3. Change the value of pixel (x,y), and go to step 1



Image Enhancement Using Histogram Statistics



Image Enhancement Using Histogram Statistics

3x3 local neighbor is used



Enhancement Using Arithmetic/Logic Operations

▪ Logic operations for masking

AND: p&255=p,   p&0=0

OR: p|255=255,   p|0=p



Enhancement Using Arithmetic/Logic Operations

▪ Pixelwise arithmetic operations

A

B

A+B A-B

A B A/B
▪ Normalization: p’ = (p-pmin)/(pmax-pmin) 255



Image Subtraction

▪ Enhancement of image differences

A B

A-B
equalized

A-B



Image Subtraction

▪ Mask mode radiography

▪ Tracking moving vehicles

output  = input – background = vehicles



Image Averaging



Image Averaging

Original K=1

K=8 K=16

K=32 K=64

▪ Astronomical 

observation
▪ observing the same scene over 

long periods of time

▪ continuous integration of signal 

▪ equivalent to summation or 

averaging 



Masking (Spatial Filtering)

▪ Mask is moved from pixel to pixel

▪ At each location, the mask coefficients are 

multiplied by the corresponding pixel values, 

and then summed up 

g(x,y) = w(-1,-1)f(x-1,y-1) 

+ w(-1,0)f(x-1,y) + ...

+ w(1,1)f(x+1,y+1)

abc

def

ghi

ihg

fed

cba

Masking with Convolving with 

=



Masking (Spatial Filtering)



Masking (Spatial Filtering)

▪ Boundary problem

1. Limit the excursion of the center of the mask, so that 

the mask is fully contained within the image

Output image is smaller than input image

2. Extrapolate the input image sufficiently, so that the 

mask can be applied near the boundaries also.

Zero padding

Repetition

Mirroring

etc
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Smoothing Spatial Filters

▪ Averaging filter and weighted averaging filter 

▪ Blends with adjacent pixel values

▪ Blurring

Removal of small details before large object extraction

Bridging of small gaps in lines or curves

Reduction of sharp transitions in gray levels

Advantage: noise reduction

Disadvantage: edge blurring



Smoothing Spatial Filters

3

9

35

5

15 ▪ Losing edges

▪ Reducing noises

▪ Removing small objects



Smoothing Spatial Filters

▪ Finding objects of interest



Order-Statistics Filter

6 4 6

2 1 3

2 5 0

▪ Sort the gray levels of the neighborhood

(0, 1, 2, 2, 3, 4, 5, 6, 6)

min       median       max

▪ Min filter

Replace the center pixel with the minimum gray level (0)

▪ Max filter

Replace the center pixel with the maximum gray level (6)

▪ Median filter

Replace the center pixel with the median (3)

Excellent suppression of salt-and-pepper noises without 
blurring

3x3 averaging filter 3x3 median filter



Sharpening Spatial Filters

▪ Highlight fine detail

▪ Difference operator

cf. summation operator for smoothing

Derivative in digital domain

▪ 1st-order derivative (1D case)

▪ 2nd-order derivative

( 1) ( )
f

f x f x
x


= + −



2

2
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f x f x f x f x f x f x f x

x
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



Sharpening Spatial Filters

▪ 1st-order derivative 

generates thicker 

edges

▪ 2nd-order derivative 

has a stronger 

response to fine 

detail



Laplacian Operator



Laplacian Operator

▪ Laplacian mask

▪ Laplacian operator indicates how brighter the current pixel is 

than the neighborhood

Gray level discontinuity → edge lines

Flat background → zero output

▪ Background features can be recovered by adding the original 

image to the Laplacian image
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Laplacian Operator

▪ Enhancing details

▪ Frequently used 

sharpening filter



Laplacian Operator



High-boost filtering Using Laplacian Operator

▪ Input image is darker than desired



Gradient Operator

-1 -2 -1

0 0 0

1 2 1

-1 0 1

-2 0 2

-1 0 1



Gradient Operator



Combining Spatial Enhancement Methods - Art

(a) original (b) Laplacian of (a)

(c)  =  (a)+(b) (d) gradient of (a)

(e) smoothed (a) (f)   = (c)x(e)

(g)   = (a)+(f) (h)  power-law transform of (g)


