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Image Enhancement

= Objective
» Make an image more suitable for a specific application
» Problem oriented
» Subjective evaluation
x viewer is the ultimate judge
» No general theory

x Many trials and errors are involved to tune several
parameters

=  Spatial domain approaches
» Direct manipulation of pixels in an image

=  Frequency domain approaches
» Modification of the Fourier transform of an image

=  Combinations of both spatial and frequency
approaches



Background

Enhancement System

Input Image

A 4

Output Image

f(x,y) T

- Point processing

g(x.y) = TLf(xy) ]

-g(X,y)

»  Output pixel value depends only on the input pixel value at the same

location

- Filtering (mask processing)

g(x,y) = TL{f(U,v): (u,v) € N(X,y)} ]

»  Output pixel value at (x,y) is determined by the values of the input

pixels within the neighborhood of (x,y)
> e.g. g(xy) = (fix,y)+f(x+1,y))/2



Point Processing

g(x,y) = T[f(x,y) ]

The enhancement system is fully described by
s =T(r)

where s = g(x,y) and r = f(x,y)
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Filtering (Mask Processing)

- Mask is moved from pixel to pixel

" At each location, the mask values
H—(x.y) are multiplied by the corresponding
pixel values, and then summed up

" For example,

0 |4 0 g(x,y) = f(x,y)
+ 4f(x-1,y) + 5f(x+1,y)
2|1 s + 2f(x,y-1) + 3f(x,y+1)

0 [5 0

Origin

Image f(x, ¥)

" This is equivalent to the
X convolution of f(x,y) with a filter
with the impulse response
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Basic Gray Level Transformations

S =T(r)

Lookup table
Implementation
»  €.¢. negative transform

unsigned char T[255];
T[O0] = 255;
T[1] 254;
T[2] 253;

1;
0;

T[254]
T[255]

for (x=0; x<width; x++)
for (y=0; y<height; y++)
output.pixel (x,y) =
Tlinput.pixel (x,vy)];
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Negative Transform

= s=L—-1-r1

» L:# of gray levels (typically 256)

ab

FIGURE 3.4

(a) Original
digital
mammogram.

(b) Negative
image obtained
using the negative
transformation in
Eq. (3.2-1).
(Courtesy of G.E.
Medical Systems.)




Log Transforms

= s =clog(l+r) -
» e.g.c=106.3 ! f(x)=106.3log(1+x)
[0,255] —[0,255] I
» enhance contrast on dark regions
x expand dark pixel values 200T 7
. . i
» worsen contrast on bright regions I yd
x compress bright pixel values i
150 |
= |nverse log (exponential)
transform 100 |
» compress dark pixel values and i
expand bright pixel values : /
5ol //
// 9=




Log Transform of Fourier Transform

ab

FIGURE 3.5

(a) Fourier
spectrum.

(b) Result of
applving the log
transformation

given in

Eq. (3.2-2) with

c=1.
= Fourier spectrum with values r € [0, 1.5x10"6]
= After log transform s = log(1+r), s e [0, 6.2]

= After linear scaling s’ = (255/6.2)s, s’ € [0, 255]



Power-Law Transforms

s=cr’
» C=2551r;:
[0,255] —[0,255]

» expand dark levels and
compress bright levels

» expand bright levels
and compress dark
levels

Varying y controls the
amount of expansion and
compression

Output gray level, s
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Power-Law Transforms — Gamma Correction

Non-linear characteristics of capture, printing and display devices
CRT display

>

>

(intensity) = (voltage)?°

Gamma correction: s= r1/25 = (04
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FIGURE 3.7

{a) Linear-wedge
gray-scale image.
{b) Response of
monitor to linear
wedge.

(¢) Gamma-
corrected wedge.
(d) Output of
monitor.

Image as viewed on monitor

O nir

Yavi

Image as viewed on monitor



Power-Law Transforms — Contrast Enhancement

v<1: Expand dark gray levels




Power-Law Transforms — Contrast Enhancement

v>1: Expand bright gray levels




Piecewise-Linear Transformations

Piecewise-Linear Functions

»  Freedom of design
»  More user input

L—1 ,

(ra. 52)

AL/

T(r)

Ouput gray level, s
)
=
|

L/l
(re-51)

0 | | 1
0 L/A L2 3Lj4

Input gray level.r




Piecewise-Linear Transformations

Gray-level slicing

L — 1 . ab

c d

FIGURE 3.11

{a) This
transformation
highlights range
[ A, B] of gray
levels and reduces
all otherstoa
constant level.
(b) This
transformation
highlights range
| A, B] but
preserves all
other levels.

(c) Animage.
{d) Result of
using the
transformation
in (a).




Piecewise-Linear Transformations

Bit-plane slicing

» Analysis of bit-plane data
»  Determining the resolution of quantizer
x  Bit-plane coding (JPEG2000)

» Each bit-plane image is a binary image

Omne 8-bit byte

- Bit-plane 7

{most significant )

Bit-plane 0
(least significant)

\\\\\\\K

FIGURE 3.12
Bit-plane
representation of
an 8-bit image.
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Histogram Processing

" Histograms are the basis for numerous spatial domain image
processing techniques

» Rough estimate of probability distribution of gray levels
» Simple to compute

" Histogram

h(re) = Nk
» I Kk-th gray level
» N the number of pixels in the image having gray level r,

- Normalized histogram

P(re) = ni/n

» Nn: the total number of pixels

g Zk: p(rk) =1



Histogram - Example

Dukimes | m In general, the uniform
distribution of gray levels is
desirable

» high contrast
» agreat deal of details
» high dynamic range

Bright image

High-contrast image




Histogram Equalization

=  Enhance an input mage to have the gray level
distribution, which is as uniform as possible

= Approach:

» Continuous derivation — discrete approximation /

¢en

S

: Problem definition
» I :gray level of input image

x Normalized to [0, 1]

x  Probability density function: p,(r) \(O’O)
» Monotonic increasing function: s =T(r), s €[0,1]
» Goal is to find the function T, such that

x pg(s)=1forallse]0,1]

x lLe. sis auniform random variable



Histogram Equalization

Function from random variable to random variable

s =1T(r)
Recall that
ds
ps(s)|ds| = pr(r)|dr], or p,.(r) = ps(s) o
dr
Therefore
pr(r) = T°(r)
We have

T'(r)= f pr(w)dw + ¢ = f pr(w)dw
—00 0



Histogram Equalization

o Continuous case

s=T(r)=] p,(w)dw

k
= Discrete approximation s, =T(r)=)" p,(r,)
j=0

=  Example

input gray level k

0 1 2 3 4 5 6 7
normalized input ri 0 1/7 217 3/7 al7 5/7 6/7 1
histogram ny 1 3 2 7 8 3 0 1
normalized histogram ni/n 1/25 3/25 2/25 7/25 8/25 3/25 0 1/25
normalized output s 1/25 4125 6/25 13/25 21/25 24/25 24/25 1
denormalized output ok = sk X 7 7125 28/25 42/25 91/25 147/25 168/25 168/25 7
output gray level floor(o) 0 1 1 3 5 6 6 7
m 0 1 2 3 4 5 6 7
output histogram np, 1 5 0 7 0 8 3 1




Histogram Equalization

input gray level 0 1 2 3 4 5 6 7
output gray level 0 1 1 3 5 6 6 7
input histogram 1 3 2 7 8 3 0 1
output histogram 1 5 0 7 0 8 3 1

= Does not provide the
exactly uniform output

> Discrete approximation

= But, spread the histogram
automatically

=

=

input histogram

\ output histogram /




Histogram Equalization




Histogram Matching (Specification)

Specify the shape of output histogram
Continuous derivation

PDF of input: p,.(7), r € [0, 1]

Specified PDF of output: p.(z), z € [0, 1]

Temporary variable: s and v
.
s=T(r) = / pr(w)dw
Jo
v = [ z ] = / Pz I: w ] dw
<
Both s and v are uniform random variables on [0, 1]. Thus we have
T(r)y=s=v=_G(z)
Therefore, the desired transform is given by

=G to T(r)



Histogram Matching (Specification)

> = '[':::_l -:Z:-11[r‘:}

Discrete Approximation




Number of pixels { X 10%)
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Histogram Matching
(Specification)

Failure of histogram equalization
> two many zero pixels
> discrete approximation error
> Little contrast enhancement



Number of pixels { X 107)
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Histogram Matching
(Specification)

. Better result of histogram
matching

»  Specifying target histogram

64 128 192
Gray level

x  Many trials and errors

. Just illustration

»  Power transform with gamma
< 1 may provide a similar or
better result with less human
inputs

. Useful
| | » If we know general

characteristics of input
images and know what the
target histogram should be
by experience

_ »  The same target histogram is
reused for many images

=]

64 128 192 255
Gray level



Local Enhancement Using Histogram Equalization

Global equalization may fail to enhance details over small areas in
an image

»  The number of pixels in these areas may be too small to have effect on
the global histogram

Local Processing

1.  For each pixel (x,y), define a neighborhood (e.g. 7x7 square)
2. Compute the local histogram and find the equalizing transform
3. Change the value of pixel (x,y), and go to step 1

. - - -
. . ¢
FE -
L]
. b

abc

FIGURE 3.23 (a) Original image. (b) Result of global histogram equalization. {¢) Result of local histogram
equalization using a 7 X 7 neighborhood about each pixel.



Image Enhancement Using Histogram Statistics

Global statistics
L—1
Mean: m = E ripl(ri)
i
L—1
_ 3 , O
Varance: 0~ = E (ri —m ) plri)
=l
After defining a neighborhood S, we can also define local
mean and variance at each pixel (z, y)
Local mean: mg,, = E ro (1)
(8.t)ESpy

. oa g , L \
Variance: o5 == Z \Tst — Ms,, ) PlTs)

N L
II .""i.,ll .I':"HJ.I!'EJ



Image Enhancement Using Histogram Statistics

3x3 local neighbor is used

Sy

o { - fley) ifmg, < 04mand 0.020° < 0f < 040"
glr.y) = )

fle.y) otherwise




Enhancement Using Arithmetic/Logic Operations

= Logic operations for masking

AND: p&255=p, p&0=0

abc
de f

FIGURE 3.27

{a) Original
image. (b) AND
image mask.

(¢) Result of the
AND operation
on images (a) and
(b). (d) Original
image. (e) OR
image mask.

() Result of
operation OR on
images (d) and
(e).

4
A

OR: p|255=255, p|0=p



Enhancement Using Arithmetic/Logic Operations

" Pixelwise arithmetic operations

Normalization: p’ = (P-Pmin)/(Pmax-Pmin) 255



Image Subtraction

. Enhancement of image differences

equalized




Image Subtraction

- Mask mode radiography

ab

FIGURE 3.29
Enhancement by
image subtraction.
(a) Mask image.
(b) An image
(taken after
injection of a
contrast medium
into the
bloodstream) with
mask subtracted
out.

. Tracking moving vehicles
> output = input — background = vehicles



Image Averaging

Noise reduction
Assumption:
™ Several pictures of the same object with different noises are available

. . . b
. Noises are uncorrelated with mean 0 and variance o=

gi(z,y) = fley)+mley)
g (z.y) = flz,y) +nrlzy)
Averaging
o Lo - |
gler.y) = - Z gi(z,y) = flz,y)+ = Z nilx,y) = flz,y) + 7z, y)
K < K 4
i=1 =1
1 K K 1
0* = Bty =—E00 S niym;(z.y) = —o’
K= = Pt ' K

The noise power of the averaged image is /K times smaller than each individual image.



Image Averaging

Astronomical \

observation

observing the same scene over
long periods of time

continuous integration of signal

equivalent to summation or
averaging

Original

K=16

K=64




Masking (Spatial Filtering)

T“‘Im:q_u: origin

Image fix. ¥)

Mask is moved from pixel to pixel

At each location, the mask coefficients are
multiplied by the corresponding pixel values,
and then summed up

9(x,y) = w(-1,-1)f(x-1,y-1)
+ w(-1,0)f(x-1,y) + ...
+ w(1,1)f(x+1,y+1)

/I\/Iasking with Convolving witﬁ

a |b c [ h g

d e f f e d

g | h |i c |b |[a

\_ /




Masking (Spatial Filtering)

Masking with a mask w of size (2a + 1) x (2b 4+ 1)

glz,y) = Z Z w(s. t)fle+ s, y+1t)

i=—ia f=—2"h

Convolving with a filter k of size (2a + 1) x (264 1)

g (z,y) = Z Z his.t)f(x

S=—a f—=—

Note that g(x,y) = g'(x,y) ifw(s, t) = h({—s, —t)

For masking, we use the following notation also

R = E Wiz = w1z +wozo + ...

i=1

where w; ’s are masking coefficients and z;’s are pixel values.

s,y — 1)

+ Wz

w, W, Wy
wy Ws W
w Wy Wy




Masking (Spatial Filtering)

Boundary problem
1. Limit the excursion of the center of the mask, so that
the mask is fully contained within the image
»  Output image is smaller than input image

2.  Extrapolate the input image sufficiently, so that the
mask can be applied near the boundaries also.

Zero padding
Repetition
Mirroring

etc
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Smoothing Spatial Filters

. Averaging filter and weighted averaging filter
1 1 1 1 2 1
%x 1 1 1 TIEX 2 4 2
1 1 1 1 2 1
. Blends with adjacent pixel values
- Blurring

» Removal of small details before large object extraction
»  Bridging of small gaps in lines or curves
» Reduction of sharp transitions in gray levels

x  Advantage: noise reduction

x  Disadvantage: edge blurring



Smoothing Spatial Filters
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Losing edges
Reducing noises
Removing small objects



Smoothing Spatial Filters

. Finding objects of interest

abc

FIGURE 3.36 (a) Image from the Hubble Space Telescope. (b) Image processed by a 15 X 15 averaging mask.
(c) Result of thresholding (b). (Original image courtesy of NASA.)



Order-Statistics Filter

. Sort the gray levels of the neighborhood
> (0,1,2,2,3,4,5,6,6) 6 4
min median max

] Min filter 2 1
> Replace the center pixel with the minimum gray level (0)
- Max filter 2 5

> Replace the center pixel with the maximum gray level (6)

. Median filter
> Replace the center pixel with the median (3)

> Excellent suppression of salt-and-pepper noises without
blurring

3x3 averaging filter 3x3 median filter




Sharpening Spatial Filters

= Highlight fine detall

= Difference operator
» cf. summation operator for smoothing
» Derivative In digital domain

= 15-order derivative (1D case)

ﬁz f(x+1)— f(x)
OX

«  2"_grder derivative

O D= 100 -[F (0~ F(x-D]= F(x+D) + f (x-D~21 ()

S =




Sharpening Spatial Filters

g 15-order derivative
generates thicker
edges

( = 2"-order derivative
\ | has a stronger
1' -
\ response to fine
.x _
detalil
"tl 'l
\ | |
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% ; 1'.,r—[solamd point J'I._ e
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Laplacian Operator

Negative definition

d2f  O9f

Vif = ,
] ox2  oy?’
9?2 g o g o .
o=
2 g I . .
. { = fle,y+ 1)+ fr.y —1) = 2f(x,y),
dy-
Vif o= flat Ly +fle—1Ly) + fley+ 1)+ flay— 1) —4f(,y).

Positive definition

Vi o= —fle+Ly) +fle—1Ly) + fey+ 1)+ fley— D] +4f(x,y).

Diagonal derivatives also can be included.

We will use only the positive definitions.



Laplacian Operator

" Laplacian mask

O(-1,0 -11-1]-1
114 -1 -118 (-1
O(-1,0 -11-1)-1

" Laplacian operator indicates how brighter the current pixel is
than the neighborhood
» Gray level discontinuity — edge lines
» Flat background — zero output

- Background features can be recovered by adding the original
Image to the Laplacian image

glr,y) = flr,y) + V- f(z.y) 1051 1]9 -1




Laplacian Operator

flz,y) V2 f(z,y)|

" Enhancing detalls

" Frequently used
sharpening filter

VZf(z.y)



Laplacian Operator

FIGURE 3.41 (a) Composite Laplacian mask. (b) A second composite mask. (¢) Scanning
electron microscope image. (d) and (e) Results of filtering with the masks in (a) and (b).
respectively. Note how much sharper () is than (d). (Original image courtesy of Mr. Michael
Shaffer, Department of Geological Sciences. University of Oregon, Eugene.)

LBl o]



High-boost filtering Using Laplacian Operator

= Input image is darker than desired

fup = Af(z,y) + V2 f(z,y)

ab
cd

FIGURE 3.43

(a) Same as

Fig. 3.41(c), but
darker.

(a) Laplacian of
(a) computed with
the mask in

Fig. 3.42(b) using
A=0.

(c) Laplacian
enhanced image
using the mask in
Fig. 3.42(b) with
A =1.(d)Same
as (c), but using
A=17.




Gradient Operator

Gradient
~ af
vf _ & €L _ S
o B af

Ay

Magnitude of gradient
vi=(@2ae) 2= (2 (2
i dx Ay

Discrete approximation of 1st derivatives — Sobel Masks

of of

ox oy
1|21 1|01
o|o|o 2|02

1121 -110 |1




Gradient Operator

ab
FIGURE 3.45

Optical image of
contact lens (note
defects on the
boundary at 4 and
5 o’clock).

(b) Sobel
cradient.
(Original image
courtesy of

Mr. Pete Sites.
Perceptics
Corporation.)



Combining Spatial Enhancement Methods - Art

(a) original (b) Laplacian of (a) (e) smoothed (a) ) = (c)x(e)

(c) = (a)+(b) (d) gradient of (a) (9 =@+ (h) power-law transform of (g)



