Digital Signal Processing

Chap 7. Filter Design Techniques

Chang-Su Kim

Filters



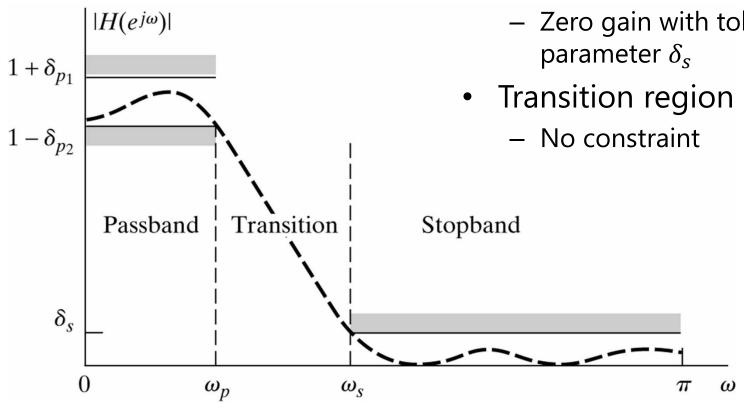
- Allow some parts of input materials to pass through it
- but block the other parts

Summary

- Filter specifications
- Design of DT IIR filters from CT filters
 - Impulse invariance
 - Bilinear transformation
 - Ex) Butterworth, Chebyshev, Elliptic filters
- There are many more filters and their design techniques, which are beyond the scope of this course.

Filter Specifications

Tolerance Scheme

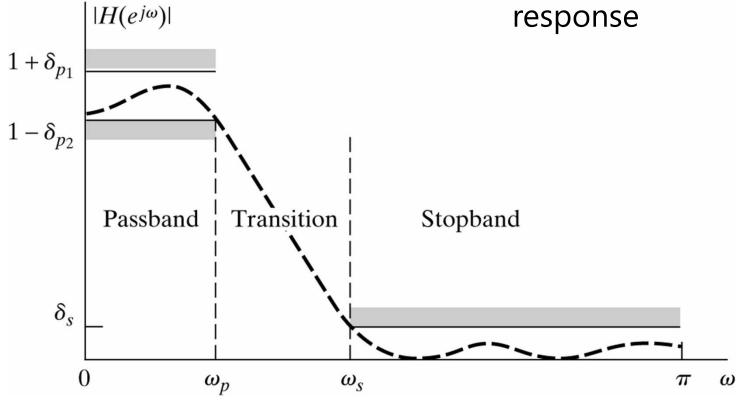


- Passband Unity gain with tolerance
 - parameters δ_{p_1} and δ_{p_2}
- Stopband
 - Zero gain with tolerance

Filter Specifications

Tolerance Scheme

 We focus on the case of lowpass filter with no constraint on the phase response



Design of DT filters from CT filters

- Historically, CT filters had been more intensively researched than DT filters
- It was natural to consider converting CT filters into DT filters
- Two such methods are
 - Impulse invariance
 - Bilinear transformation

Impulse Invariance

• Recall the C/D conversion

$$- x[n] = x_c(nT)$$

$$- X(e^{j\omega}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c\left(j\left(\frac{\omega}{T} - \frac{2\pi k}{T}\right)\right)$$

• Similarly, we obtain a DT filter from a CT filter by $h[n] = T_d h_c (nT_d)$

Then

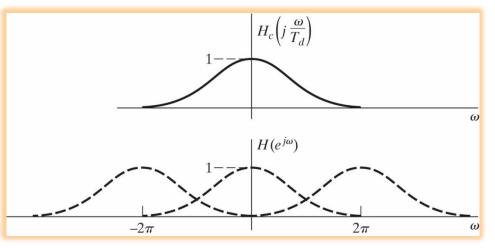
$$H(e^{j\omega}) = \sum_{k=-\infty}^{\infty} H_c\left(j\left(\frac{\omega}{T_d} - \frac{2\pi k}{T_d}\right)\right)$$

Impulse Invariance

• If the CT filter is band-limited, *i.e.* $H_c(j\Omega) = 0$ for $|\Omega| > \frac{\pi}{T_d}$

$$H(e^{j\omega}) = H_c\left(j\frac{\omega}{T_d}\right), \qquad |\omega| \le \pi$$

- In practice, aliasing occurs and the effect should be checked after the design
- The design sampling period T_d can be set to any value
 - It does not affect the implemented filter



Impulse Invariance

• Step 1: Transform the DT filter specifications to CT filter specifications

 $H_c(j\Omega) = H(e^{j\Omega T_d})$

- Step 2: Obtain a CT filter $H_c(s)$
- Step 3: $H_c(s) \Rightarrow h_c(t) \Rightarrow h[n] \Rightarrow H(z)$ - ex) $H_c(s) = \frac{A_k}{s-s_k} \Rightarrow H(z) = \frac{T_d A_k}{1-e^{s_k T_d z^{-1}}}$
- Step 4: Check the aliasing effect
 - If the DT specifications are not satisfied, restart with stronger constraints.

Ex) Butterworth Filter Design Using Impulse Invariance

• Step 1: Given DT filter specifications $0.89125 \le |H(e^{j\omega})| \le 1, \quad 0 \le |\omega| \le 0.2\pi$ $|H(e^{j\omega})| \le 0.17783, \quad 0.3\pi \le |\omega| \le \pi$

 $\begin{array}{ll} \text{we have CT specifications with } T_d = 1 \\ 0.89125 \leq |H_c(j\Omega)| \leq 1, \quad 0 \leq |\Omega| \leq 0.2\pi \\ |H_c(j\Omega)| \leq 0.17783, \quad 0.3\pi \leq |\Omega| \leq \pi \end{array}$

Ex) Butterworth Filter Design Using Impulse Invariance

• Step 2: Butterworth filter

$$|H_c(j\Omega)|^2 = \frac{1}{1 + \left(\frac{\Omega}{\Omega_c}\right)^{2N}}$$

$$1 + \left(\frac{0.2\pi}{\Omega_c}\right)^{2N} = \left(\frac{1}{0.89125}\right)^2 \text{ and } 1 + \left(\frac{0.3\pi}{\Omega_c}\right)^{2N} = \left(\frac{1}{0.17783}\right)^2$$

$$\Rightarrow N = 5.8858 \simeq 6 \text{ and } \Omega_c = 0.70474$$
Then, based on the CT signal processing techniques

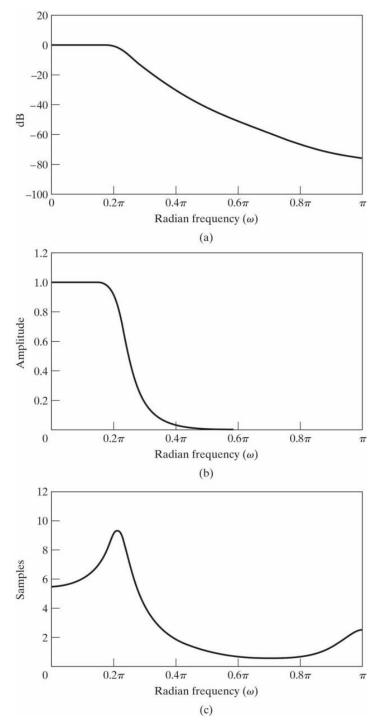
 $H_{c}(s) = \frac{0.12}{(s^{2}+0.36s+0.49)(s^{2}+0.99s+0.49)(s^{2}+1.36s+0.49)}$

• Step 3: Digital Butterworth filter

$$H(z) = \frac{0.29 - 0.45z^{-1}}{1 - 1.30z^{-1} + 0.69z^{-2}} + \frac{-2.14 + 1.15z^{-1}}{1 - 1.07z^{-1} + 0.37z^{-2}} + \frac{1.86 - 0.63z^{-1}}{1 - 1.00z^{-1} + 0.26z^{-2}}$$

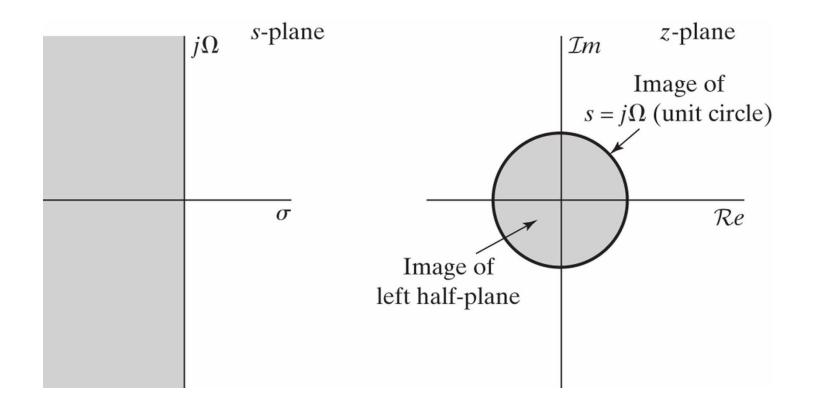
Ex) Butterworth Filter Design Using Impulse Invariance

• Step 4: Check



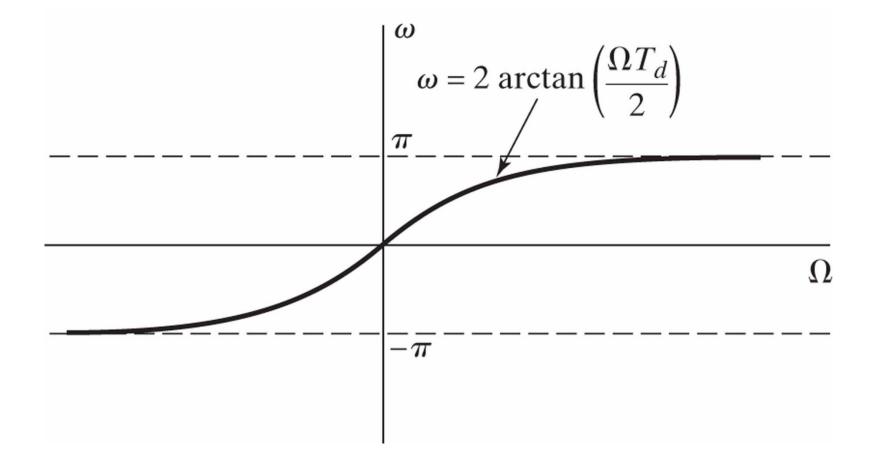
Bilinear Transformation

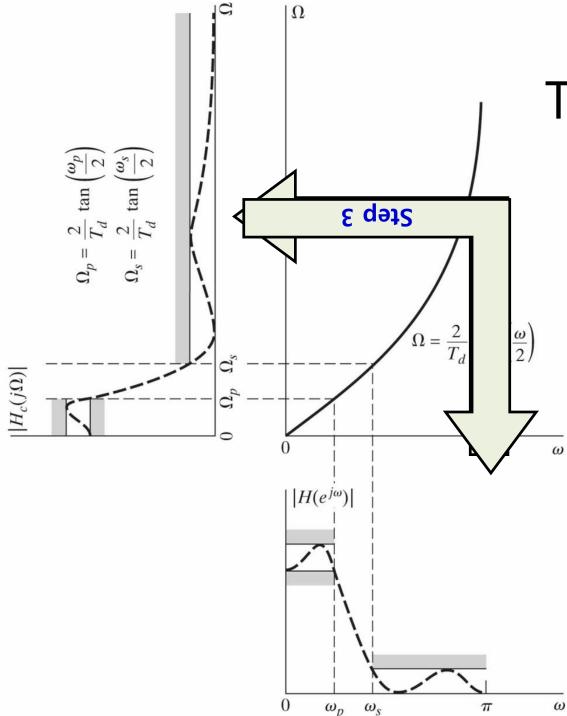
•
$$s = \frac{2}{T_d} \left(\frac{1 - z^{-1}}{1 + z^{-1}} \right)$$
 or $z = \frac{1 + \frac{T_d}{2}s}{1 - \frac{T_d}{2}s}$



Bilinear Transformation

•
$$\Omega = \frac{2}{T_d} \tan\left(\frac{\omega}{2}\right)$$
 or $\omega = 2 \arctan\left(\frac{\Omega T_d}{2}\right)$





Bilinear Transformation

- Step 1: Transform the DT filter spec. to CT filter spec.
- Step 2: Obtain a CT filter H_c(s)

Step 3:
$$H(z) =$$

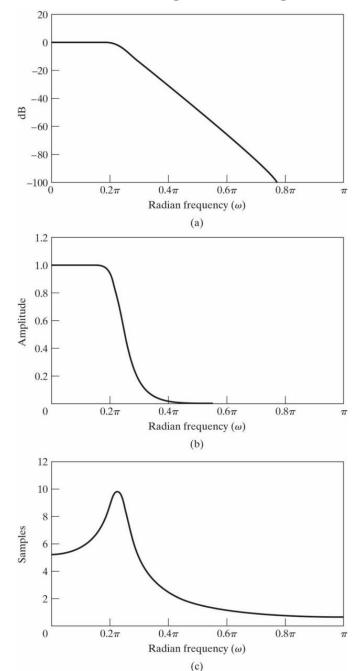
 $H_c\left(\frac{2}{T_d}\left(\frac{1-z^{-1}}{1+z^{-1}}\right)\right)$

Ex) Butterworth Filter Design Using Bilinear Transformation

- Step 1: Given DT filter specifications $0.89125 \le |H(e^{j\omega})| \le 1, \quad 0 \le |\omega| \le 0.2\pi$ $|H(e^{j\omega})| \le 0.17783, \quad 0.3\pi \le |\omega| \le \pi$
 - we have CT specifications with $T_d = 1$ $0.89125 \le |H_c(j\Omega)| \le 1$, $0 \le |\Omega| \le 2 \tan\left(\frac{0.2\pi}{2}\right)$ $|H_c(j\Omega)| \le 0.17783$, $2 \tan\left(\frac{0.3\pi}{2}\right) \le |\Omega| \le \infty$
- Step 2: Obtain a CT Butterworth filter

• Step 3:
$$H(z) = H_c\left(2\left(\frac{1-z^{-1}}{1+z^{-1}}\right)\right)$$

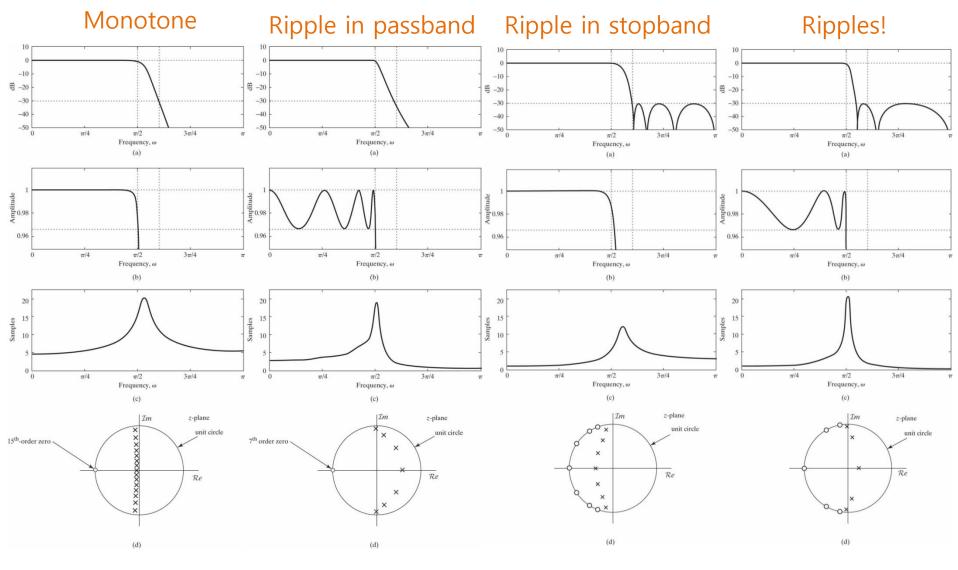
Ex) Butterworth Filter Design Using Bilinear Transformation



Comparison of Butterworth, Chebyshev, and Elliptic Filters

- Specifications
 - Passband edge frequency $\omega_p=0.5\pi$
 - Stopband edge frequency $\omega_s = 0.6\pi$
 - Maximum passband gain = 0 dB
 - Minimum passband gain = -0.3dB
 - Maximum stopband gain = -30dB

Comparison of Butterworth, Chebyshev, and Elliptic Filters



Butterworth, 15th

Chebyshev I, 7th

Chebyshev II, 7th

Elliptic, 5th