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Discrete Fourier Transform - Examples

▪ Zero frequency is located at the center

▪ Inverse relationship between space and frequency

The separation of spectrum zeros in vertical direction is 

exactly twice that in horizontal direction
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▪ Rotation in space → Rotation in frequency

Discrete Fourier Transform - Examples

(a) a sample image (b) its spectrum (c) rotated image (d) resulting spectrum



Filtering in Frequency Domain



Filtering in Frequency Domain

▪ F(u,v) is complex, although f(x,y) is a real image

▪ H(u,v)

Real : zero-phase-shift filter

radially symmetric about origin

▪ g(x,y) is a real image

Zero-forcing of imaginary parts to avoid round-off errors



Filtering in Frequency Domain

▪ Preprocessing

Image cropping

Zero padding

Data conversion to ‘float’

▪ Postprocessing

Image cropping

Zero-forcing of imaginary parts

Data conversion to ‘unsigned char’



Notch Filter

Suppression of DC components

linear scaling for display

▪ Notch filter
Suppress certain frequency 
components while preserving the 
other components

cf.  bandpass filter

Notch filter is used to identify spatial 
image effects caused by specific, 
localized frequency domain 
components



Lowpass Filter vs. Highpass Filter

▪ Low frequencies

General gray level appearance over smooth areas

▪ High frequencies

Details, edges and noise

▪ Lowpass filtered image

Less sharp details than original image

▪ Highpass filtered image

Less gray level variation over smooth areas with 

emphasized details
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Lowpass Filter vs. Highpass Filter



Modified Highpass Filter



Space Domain vs. Frequency Domain

▪ Comparison of computations 

N: number of pixels in the image

Frequency domain

F(u,v) = FFT [f(x,y)] O(N logN)

H(u,v) = FFT [h(x,y)] O(N logN)

G(u,v) = F(u,v) H(u,v) O(N)

g(x,y) = IFFT [G(u,v)] O(N logN)

Total O(N logN)

Spatial domain 

C: number of non-zero filter coefficients

1 ≤ C ≤ N

Requires CN multiplications and (C-1)N additions

Spatial domain approach is preferred when C is 

much less than N (typical cases)

Frequency domain approach is preferred when C 

is close to N

ihg

fed

cba

C=9



▪ General procedure to design filters

1. Specify filter characteristics H(u,v) in frequency domain

Frequency domain is more intuitive (lowpass, highpass, 

bandpass, etc)

2. Inverse transform H(u,v) to spatial domain h(x,y)

3. Approximate h(x,y) with a small mask h’(x,y)

Computationally more efficient to use small mask in 

spatial domain

Space Domain vs. Frequency Domain



▪ Gaussian filter

Lowpass

Note the reciprocal nature (inverse relationship)  between 

space and frequency

Highpass

A>B and s1 >  s2

Space Domain vs. Frequency Domain



Space Domain vs. Frequency Domain



Ideal Lowpass Filter

▪ Distance from the origin

D(u,v) = (u2+v2)1/2

▪ Transfer function



Ideal Lowpass Filter



Ringing Artifacts

▪ sinc function in spatial domain

Dominant center component 

blurring

Circular (+/-) components 

ringing 

▪ Reciprocal nature between 

space and frequency

Narrow lowpass ~ wider 

ringing



Butterworth Lowpass Filters

▪ Perform blurring without ringing

▪ Transfer function of a Butterworth filter of order n

D0: cutoff frequency distance

H(u,v) = 0.5 when D(u,v) = D0



Butterworth Lowpass Filter

▪ Ringing can be observed as order n increases

▪ In the extreme case of n= ∞, the Butterworth filter is 

identical to the ideal filter 



Butterworth Lowpass Filter (order 2)



Butterworth Lowpass Filter (order 2)



Gaussian Lowpass Filters

▪ Transfer Function

D0: cutoff frequency distance

H(u,v) = 0.667 when D(u,v) = D0



Gaussian Lowpass Filters

▪ Spatial response is also 

Gaussian

▪ No ringing is guaranteed

▪ Less sharp transition 

around cutoff frequency 

than Butterworth filters



Applications of Lowpass Filtering

▪ Preprocessing before machine recognition

Removal of small gaps



Applications of Lowpass Filtering

▪ Cosmetic processing of photos



Applications of Lowpass Filtering

▪ Enhancement of Satellite Images

Removal of horizontal sensor scan lines



Highpass Filters

▪ Reverse operation of lowpass filters

▪ Transfer function

Hhp(u,v) = 1 – Hlp(u,v)

A highpass filter Hhp(u,v) can be designed using a 

lowpass  filter Hlp(u,v) 

▪ Impulse response

hhp(x,y) = d(x,y) – hlp(x,y)

▪ We also consider only zero-phase-shift radially 

symmetric filters



Highpass Filters – Transfer Functions



Highpass Filters – Impulse Responses



Ideal Highpass Filters



Butterworth Highpass Filters



Gaussian Highpass Filters



Laplacian in Frequency Domain



Laplacian in Frequency Domain



Laplacian Sharpening Filter

▪ Positive definition of 
Laplacian

H(u,v) = u2+v2

▪ Recall 

▪ Transfer function of 
Laplacian sharpening 
filter

H(u,v) = 1+ (u2+v2)
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High-Boost Filters

▪ Hhb(u,v) = A – Hlp(u,v) = (A-1) + Hhp(u,v) 



High Frequency Emphasis Filters

▪ Hhfe(u,v) = a + b Hhp(u,v)

b > a > 0,     0.25 < a < 0.5,    1.5 < b < 2.0


