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Discrete Fourier Transform (DFT)

M -point input signal

f(x) : 0 ≤ x ≤ M − 1

Forward transform

F (u) =
1

M

M−1∑
x=0

f(x)e−j2πux/M (WM � e−j2π/M )

=
1

M

M−1∑
x=0

f(x)Wux
M for each 0 ≤ u ≤ M − 1

Computational load of DFT: approximately M2 additions and multiplications

Inverse transform

f(x) =

M−1∑
u=0

F (u)ej2πux/M

=

M−1∑
u=0

F (u)W−ux
M for each 0 ≤ x ≤ M − 1
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Terminology

F (u) = R(u) + jI(u) = |F (u)|e−jΦ(u)

Magnitude: |F (u)| = (R2(u) + I2(u))
1
2

Phase angle: Φ(u) = tan−1
[

I(u)
R(u)

]

Power spectrum: |F (u)|2 = R2(u) + I2(u)

Basis vectors: f(x) =
∑M−1

u=0 F (u)W−ux
M
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DFT is a Lossless Representation

{f(x)} F
=⇒ {F (u)} F−1

=⇒ {g(x)}, then

g(x) = f(x)
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Properties of DFT

P1) The extensions are periodic

The extension of f is periodic with period M

f(x + kM) = f(x)

Similarly, the extension of F is periodic with period M

F (u + kM) = F (u)
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Properties of DFT

P2) The DFT of a real sequence is conjugate symmetric

Conjugate symmetric with respect to zero: F (u) = F∗(−u)

F (0) is a real number

If M = 2n, conjugate symmetric with respect to M
2

: F ( M
2

+ u) = F ∗( M
2

− u)

F ( M
2

) is a real number

M real numbers in spatial domain are represented also by M real numbers in frequency

domain
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Convolution
Convolution of two M -point sequences f(x) and h(x):

g(x) = f(x) ∗ h(x)

=
1

M

M−1∑
m=0

f(m)h(x − m)

=
1

M

M−1∑
m=0

f(x − m)h(m)

Linear convolution

f(x) = g(x) = 0 if x < 0 or x ≥ M

Circular convolution

f(x + kM) = f(x)

g(x + kM) = g(x)
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Linear convolution vs. circular convolution

Zero padding f(x) and h(x) to make 9-point sequences, then do 9-point circular convolution to obtain

the linear convolution
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Properties of DFT

P3) Using circular convolution to obtain linear convolution

Conditions

f(x): M -point sequence, f(x) = 0 if x < 0 or x > M − 1

h(x): N -point sequence, h(x) = 0 if x < 0 or x > N − 1

Then, linear convolution of f(x) and h(x) will generate (M + N − 1)-point sequence,

f(x) ∗ h(x) = 0 if x < 0 or x > M + N − 2

Procedures

1. Zero padding f(x) and h(x) to yield (M + N − 1)-point sequences fp(x) and hp(x).

2. Obtain (M + N − 1)-point circular convolution of fp(x) and hp(x).

3. Result of Step 2 is equivalent to the linear convolution of f(x) and h(x).
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Properties of DFT

P4) Circular convolution theorem

g(x) = f(x) ∗ h(x) =
1

M

M−1∑
m=0

f(m)h(x − m)

=⇒ G(u) = F (u)H(u)

Discrete Fourier Transform – p. 10



Properties of DFT

P5) Fast Fourier transform (FFT) is available
Complexity = O(M log M)

Circular convolution can be performed fast in the frequency domain using two FFTs and one

IFFT.

Hence, linear convolution also can be performed in the frequency domain.
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Properties of DFT

P6) Computing inverse transform using forward transform
1. Take the complex conjugate of the input vector

2. Put the result of Step 1 into the forward transform as input vector

3. Take the complex conjugate of the output vector of Step 2 and multiply it by M
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2D DFT
Input image of size M × N

f(x, y) : 0 ≤ x ≤ M − 1, 0 ≤ y ≤ N − 1

Forward transform

F (u, v) =
1

MN

M−1∑
x=0

N−1∑
y=0

f(x, y)e−j2π(ux/M+vy/N) (WM � e−j2π/M )

=
1

MN

M−1∑
x=0

N−1∑
y=0

f(x, y)Wux
M W vy

N

Inverse transform

f(x, y) =

M−1∑
u=0

N−1∑
v=0

F (u, v)ej2π(ux/M+vy/N)

=

M−1∑
u=0

N−1∑
v=0

F (u, v)W−ux
M W−vy

N
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Properties of 2D DFT

2D DFT and IDFT are separable
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Properties of 2D DFT

Translation

f(x, y)W−u0x
M W−v0y

N ⇔ F (u − u0, v − v0)

f(x − x0, y − y0) ⇔ F (u, v)W ux0
M W vy0

N

Especially, f(x, y)(−1)x+y ⇔ F (u − M/2, v − N/2).
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Properties of 2D DFT

All properties of 1D DFT also can be easily generalized to 2D case

The extensions are periodic

f(x + kM, y + lN) = f(x, y)

F (u + kM, v + lN) = F (u, v)

The DFT of a real sequence is conjugate symmetric

F (u, v) = F ∗(−u,−v)

F (M/2 + u, N/2 + v) = F ∗(M/2 − u, N/2 − v)
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Properties of 2D DFT

All properties of 1D DFT also can be easily generalized to 2D case

2D circular convolution (based on the periodicity)

g(x, y) = f(x, y) ∗ h(x, y) =
1

MN

M−1∑
m=0

N−1∑
n=0

f(m, n)h(x − m, y − n)

G(u, v) = F (u, v) · H(u, v)

Obtaining linear convolution using circular convolution.

f(x, y) of size M × N

h(x, y) of size O × P

1. Zero padding f and h to make (M + O − 1) × (N + P − 1) images fp and hp

2. Linear convolution of f and h is given by

IFFT2D
[
FFT2D[fp] × FFT2D[gp]

]
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