NEURAL NETWORKS

Terminology

If $\mathbf{w}^T \mathbf{x} + w_0 > 0$ assign \mathbf{x} to ω_1 If $\mathbf{w}^T \mathbf{x} + w_0 < 0$ assign \mathbf{x} to ω_2

- **Perceptron** or **neuron**
- Synaptic weights or synapses
- Activation function: *e.g.* f(x) = s(x) (step function)

Nonlinear Classifiers

We deal with problems that are not linearly separable

ONE! TWO! THREE!

One-Layer Perceptron

• XOR problem is not linearly separable

One-Layer Perceptron

• AND and OR problems are linearly separable

XOR problem: solve it in two successive phases
 – 1st phase (or layer) uses two lines

Table 4.3	Trut	n Tab	le fo	or the	e Two
Computatio	n P	hases	of	the	XOR
Problem					

	19			
$\boldsymbol{x_1}$	x_2	y_1	y_2	2nd Phase
0	0	0(-)	0 (-)	B (0)
0	1	1 (+)	0(-)	A (1)
1	0	1 (+)	0(-)	A (1)
1	1	1(+)	1 (+)	B (0)

XOR problem: solve it in two successive phases
 - 2nd phase

Table 4.3	Τrι	uth	Table	e fo	r the	Two
Computatio	n	Pha	ises	of	the	XOR
Problem						

	19			
x_1	x_2	y_1	y_2	2nd Phase
0	0	0(-)	0(-)	B (0)
0	1	1 (+)	0(-)	A (1)
1	0	1 (+)	0(-)	A (1)
1	1	1 (+)	1 (+)	B (0)

XOR problem: solve it in two successive phases
 2-layer perceptron (or 2-layer feedforward neural network)

- $g_1(\mathbf{x}) = x_1 + x_2 \frac{1}{2} = 0$
- $g_2(\mathbf{x}) = x_1 + x_2 \frac{3}{2} = 0$
- $g(\mathbf{y}) = y_1 y_2 \frac{1}{2} = 0$

Table 4.3	Truth	Table	e fo	r the	e Two
Computatio	n Ph	ases	of	the	XOR
Problem					

	19			
\boldsymbol{x}_1	x_2	y_1	y_2	2nd Phase
0	0	0(-)	0(-)	B (0)
0	1	1 (+)	0(-)	A (1)
1	0	1 (+)	0(-)	A (1)
1	1	1 (+)	1 (+)	B (0)

- Terminology
 - 2-layer perceptron (or 2-layer feedforward neural network)

- Classification capabilities of two-layer perceptron
 - 1st layer maps input to vertices of the unit hypercube

$$H_p = \left\{ \left[y_1, \dots, y_p \right]^T \in \mathbb{R}^p \colon y_i \in [0, 1] \text{ for } 1 \le i \le p \right\}$$

– An output of 1st layer corresponds to a polyhedron

- Classification capabilities of two-layer perceptron
 - 2nd layer detects a union of selected polyhedron

• Classification capabilities of two-layer perceptron

Two-layer perceptron can detect a class, which consists of a union of polyhedral regions, but not any union of such regions

Three-Layer Perceptron

• Classification capabilities of three-layer perceptron

Three-layer perceptron can detect a class, which consists of **any** union of polyhedral regions

Three-Layer Perceptron

• Classification capabilities of three-layer perceptron

- In 2nd layer, for each neuron, the synaptic weights are chosen so that the realized hyperplane leaves only one of the H_p vertices on one side and all the rest on the other
- 3rd layer implements OR gate

Three-Layer Perceptron

• Classification capabilities of three-layer perceptron

- 1st layer detects half-spaces
- 2nd layer detects polyhedra
- 3rd layer detects a class, which is any union of polyhedra

Nonlinearity

• A succession of two linear layers

$$- z = \beta_1 y_1 + \beta_2 y_2 = \beta_1 (\alpha_1 x_1 + \alpha_2 x_2) + \beta_2 (\alpha_3 x_1 + \alpha_4 x_2)$$

- Simplify it to one linear layer

Nonlinearity

• Activation function

BACKPROPAGATION ALGORITHM

Multilayer Perceptron Design

- Design a multilayer perceptron
 - Fix an architecture, and optimize the synaptic weights
 - To use the gradient descent scheme, we need a continuous activation function
- Logistic function (instead of s(x))

$$-f(x) = \frac{1}{1 + \exp(-ax)}$$

Architecture and Formulation

- L layers and k_r neurons in the rth layer (r = 1, ..., L)
 - $k_0 = l$ nodes in the input layer
 - k_L output neurons
- N training pairs, $(\mathbf{y}(i), \mathbf{x}(i))$, i = 1, ..., N, are available

$$- \mathbf{y}(i) = [y_1(i), \dots, y_{k_L}(i)]^T$$
$$- \mathbf{x}(i) = [x_1(i), \dots, x_{k_0}(i)]^T$$

- During training, the actual output $\hat{\mathbf{y}}(i)$ is different from the desired one $\mathbf{y}(i)$
- Compute the synaptic weights to minimize

$$J = \frac{1}{N} \sum_{i=1}^{N} \mathcal{E}(i)$$
$$\mathcal{E}(i) = \frac{1}{2} \sum_{m=1}^{k_L} e_m^2(i) \equiv \frac{1}{2} \sum_{m=1}^{k_L} (\hat{y}_m(i) - y_m(i))^2$$

Definition of Variables

r-1

Gradient Descent

$$\mathbf{w}_{j}^{r}(\text{new}) = \mathbf{w}_{j}^{r}(\text{old}) + \Delta \mathbf{w}_{j}^{r}$$
$$\Delta \mathbf{w}_{j}^{r} = -\eta \frac{\partial J}{\partial \mathbf{w}_{j}^{r}}$$

Example

• Compute loss

- Feedforward into three perceptron layers

- Compute gradient and update its weight $J = \frac{1}{N} \sum_{i=1}^{N} \mathcal{E}(i) = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{2} (\hat{y}(i) - y(i))^{2}$ $\frac{\partial \mathcal{E}(i)}{\partial w_{11}^{3}} = \frac{1}{2} \frac{(w_{11}^{3} y_{1}^{2} - w_{12}^{3} y_{2}^{2})^{2}}{\partial W_{11}^{3}} = (\hat{y} - y) \times y_{1}^{2}$ $w_{11}^{3} (\text{new}) = w_{11}^{3} (\text{old}) - \eta \frac{\partial J}{\partial w_{11}^{3}}$

Example

• Compute loss

- Feedforward into three perceptron layers

- Compute gradient and update its weight

$$J = \frac{1}{N} \sum_{i=1}^{N} \mathcal{E}(i) = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{2} (\hat{y}(i) - y(i))^{2}$$

$$\frac{\partial \mathcal{E}(i)}{\partial w_{11}^{2}} = \frac{1}{2} \frac{\left(w_{11}^{3} \left(f(w_{11}^{2} y_{1}^{1} + w_{12}^{2} y_{2}^{1}) \right) - w_{12}^{3} y_{2}^{2} \right)^{2}}{\partial w_{12}^{2}} = (\hat{y} - y) \times w_{11}^{3} \times \frac{\partial f(w_{11}^{2} y_{1}^{1} + w_{12}^{2} y_{2}^{1})}{\partial w_{12}^{2}}$$

$$w_{12}^{2} (\text{new}) = w_{12}^{2} (\text{old}) - \eta \frac{\partial J}{\partial w_{12}^{2}}$$

Example

• Python code

import numpy as np

Create random input and output data
x = np.array([0.05, 0.10])
y = np.array([0.01, 0.99])

Randomly initialize weights
w1 = np.array([[0.15, 0.20], [0.25, 0.30]])
w2 = np.array([[0.40, 0.45], [0.50, 0.55]])
b1 = [0.35, 0.35]
b2 = [0.60, 0.60]

learning_rate = 0.01

for t in range(500):
 # Forward pass: compute predicted y
 h = x.dot(w1) + b1
 h_relu = np.maximum(h, 0)
 y_pred = h_relu.dot(w2) + b2

Compute and print loss loss = np.square(y_pred - y).sum() print(t, loss)

Backprop to compute gradients of w1
grad_y_pred = 2.0 * (y_pred - y)
grad_w2 = h_relu.T.dot(grad_y_pred)
grad_h_relu = grad_y_pred.dot(w2.T)
grad_h = grad_h_relu.copy()
grad_h[h < 0] = 0
grad_w1 = x.T.dot(grad_h)</pre>

Update weights
w1 -= learning_rate * grad_w1
w2 -= learning_rate * grad_w2
b2 -= learning_rate * grad_y_pred
b1 -= learning_rate * grad_h

Update weights

• How to update the weights effectively

Contour of a loss function

Update weights

- How to update the weights effectively
 - Direction
 - Step size (learning rate)

Contour of a loss function

Gradient Descent

- Limitations of the gradient descent
 - Compute the gradient with an average of all training pairs
 - $J = \frac{1}{N} \sum_{i=1}^{N} \mathcal{E}(i)$
 - $\mathbf{w}_j^r(\text{new}) = \mathbf{w}_j^r(\text{old}) \eta \frac{\partial J}{\partial \mathbf{w}_j^r}$
 - Take a long time when # of training pairs is large
 - Local minima & saddle point

Contours of a loss function for CIFAR-10 [1]

[1] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, "Visualizing the loss landscape of neural Nets," in NIPS 2018.

Stochastic gradient descent

- Use randomness
 - Compute the gradient with an average of randomly sampled pairs
 - $J_{X_k} = \frac{1}{n} \sum_{i=1}^n \mathcal{E}(X_k(i))$
 - $\mathbf{w}_j^r(\text{new}) = \mathbf{w}_j^r(\text{old}) \eta \frac{\partial J_{X_k}}{\partial \mathbf{w}_j^r}$
 - Repeat the above process until convergence

$$- \frac{1}{N} \sum_{i=1}^{N} \mathcal{E}(i) \approx \frac{1}{m} \sum_{k=1}^{m} J_{X_k}$$

- Speed up learning
- May overcome local minima & saddle point
 - Direction slightly different to the gradient from all pairs

Momentum

- Introduce velocity variables
 - Compute the gradient with an average of randomly sampled pairs
 - $J_{X_k} = \frac{1}{n} \sum_{i=1}^n \mathcal{E}(X_k(i))$
 - $\mathbf{v}_j^r(\text{new}) = \mu \mathbf{v}_j^r(\text{old}) \eta \frac{\partial J_{X_k}}{\partial \mathbf{w}_j^r}$
 - $\mathbf{w}_j^r(\text{new}) = \mathbf{w}_j^r(\text{old}) + \mathbf{v}_j^r(\text{new})$
 - Repeat the above process until convergence

Momentum

- Introduce velocity variables
 - Effect over the iterations when $\mu = 0.9$

•
$$\mathbf{v}_1 = -\boldsymbol{g}_1$$

•
$$\mathbf{v}_2 = -0.9 \boldsymbol{g}_1 - \boldsymbol{g}_2$$

•
$$\mathbf{v}_3 = -0.9(0.9\boldsymbol{g}_1 - \boldsymbol{g}_2) - \boldsymbol{g}_3 = -0.81\boldsymbol{g}_1 - 0.9\boldsymbol{g}_2 - \boldsymbol{g}_3$$

Root Mean Square Propagation

- Adaptive step size (learning rate) η
 - Chose a different step size η for each weight
 - Increase η when the accumulated magnitude of its gradients is small
 - Decrease η when the accumulated magnitude of its gradient is large
 - Compute the gradient with an average of randomly sampled pairs

•
$$J_{X_k} = \frac{1}{n} \sum_{i=1}^n \mathcal{E}(X_k(i))$$

•
$$\mathbf{a}_{j}^{r}(\text{new}) = \alpha \mathbf{a}_{j}^{r}(\text{old}) - (1 - \alpha) \left(\frac{\partial J_{X_{k}}}{\partial \mathbf{w}_{j}^{r}}\right)^{2}$$

•
$$\mathbf{w}_{j}^{r}(\text{new}) = \mathbf{w}_{j}^{r}(\text{old}) - \frac{\eta}{\sqrt{\mathbf{a}_{j}^{r}(\text{new}) + \epsilon}} \frac{\partial J_{X_{k}}}{\partial \mathbf{w}_{j}^{r}}$$

Update weights

- Optimizer
 - Base : SGD
 - Direction : Momentum, NAG
 - Step size : Adagrad, RMSProp, AdaDelta
 - Both : Adam, etc.

CONVOLUTIONAL NEURAL NETWORKS

Multi-layer perceptron (MLP)

- MLP for classifying the handwritten digit data
 - 784 input nodes for each image of 28×28 pixels

Multi-layer perceptron (MLP)

- MLP for classifying the handwritten digit data
 - 784 input nodes for each image of 28×28 pixels
 - Same as training set

Slightly changes

- Design a network for translation invariance
 - Split into overlapping patches

- Design a network for translation invariance
 - Feedforward each patch into a small MLP
 - Repeat for all patches

- Design a network for translation invariance
 - Feedforward each patch into a small MLP
 - Repeat for all patches

Input

- Feedforward an image into convolution layer
- Yield the hidden neurons (or feature map)

Output (feature map)

- Design a network for translation invariance
 - Simplify the information in the feature map
 - Yield the condensed feature map
 - Type of pooling
 - Max, average, etc.

Input (feature map) Output

- Design a network for translation invariance
 - Use the feature map for classification

- LeNet
 - It was developed in 1990's
 - Use for digits
 - Outperformed many other existing algorithms

- AlexNet
 - It significantly outperformed
 - 2012 ImageNet challenge (ILSVRC) winner
 - Similar to LeNet, but deeper, and bigger

- GoogLeNet
 - Proposed the inception module
 - It reduced the number of parameters
 - GoogLeNet (4M, top-5 error rate of 6.67%)
 - AlexNet (60M, top-5 error rate of 15.3%)
 - Several follow-up versions were proposed (Inception-v4)

- VGGNet
 - Use only 3×3 convolutions and 2×2 pooling
 - Uniform architecture
 - Currently the most preferred structure
 - Use a baseline feature extractor
 - Showed that depth of the network is critical component

- ResNet
 - Proposed skip connections
 - Train a network with 152 layers successfully
 - Top-5 error rate of 3.57% at the ILSVRC 2015
 - Human-level performance

28.2

ILSVRC'10

- ResNet
 - Proposed skip connections
 - Train a network with 152 layers successfully
 - Top-5 error rate of 3.57% at the ILSVRC 2015
 - Human-level performance

Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The proposed filter normalization scheme is used to enable comparisons of sharpness/flatness between the two figures.