
NEURAL NETWORKS



Terminology

If 𝐰𝑇𝐱 + 𝑤0 > 0 assign 𝐱 to 𝜔1

If 𝐰𝑇𝐱 + 𝑤0 < 0 assign 𝐱 to 𝜔2

• Perceptron or neuron

• Synaptic weights or synapses

• Activation function: e.g. 𝑓 𝑥 = 𝑠 𝑥 (step function)



Nonlinear Classifiers

We deal with problems that are not linearly 

separable



ONE! TWO! THREE!



One-Layer Perceptron

• XOR problem is not linearly separable



One-Layer Perceptron

• AND and OR problems are linearly separable

1-layer perceptron 
implementation



Two-Layer Perceptron

• XOR problem: solve it in two successive phases

– 1st phase (or layer) uses two lines



Two-Layer Perceptron

• XOR problem: solve it in two successive phases

– 2nd phase



Two-Layer Perceptron

• XOR problem: solve it in two successive phases
– 2-layer perceptron (or 2-layer feedforward neural network)

• 𝑔1 𝐱 = 𝑥1 + 𝑥2 −
1

2
= 0

• 𝑔2 𝐱 = 𝑥1 + 𝑥2 −
3

2
= 0

• 𝑔 𝐲 = 𝑦1 − 𝑦2 −
1

2
= 0

−𝟏



Two-Layer Perceptron

• Terminology

– 2-layer perceptron (or 2-layer feedforward neural network)

−𝟏

hidden
layer

output
layer

input
layer

(non-processing)



Two-Layer Perceptron

• Classification capabilities of two-layer perceptron

– 1st layer maps input to vertices of the unit hypercube

𝐻𝑝 = 𝑦1, … , 𝑦𝑝
𝑇

∈ ℝ𝑝: 𝑦𝑖 ∈ 0, 1 for 1 ≤ 𝑖 ≤ 𝑝

– An output of 1st layer corresponds to a polyhedron 



Two-Layer Perceptron

• Classification capabilities of two-layer perceptron

– 2nd layer detects a union of selected polyhedron



Two-Layer Perceptron

• Classification capabilities of two-layer perceptron

Two-layer perceptron can detect a class, which consists 

of a union of polyhedral regions, but not any union of 

such regions



Three-Layer Perceptron

• Classification capabilities of three-layer perceptron

Three-layer perceptron can detect a class, which consists 

of any union of polyhedral regions



Three-Layer Perceptron

• Classification capabilities of three-layer perceptron

– In 2nd layer, for each neuron, the synaptic weights are chosen so 

that the realized hyperplane leaves only one of the 𝐻𝑝 vertices 

on one side and all the rest on the other

– 3rd layer implements OR gate

2nd layer 3rd layer1st layer



Three-Layer Perceptron

• Classification capabilities of three-layer perceptron

– 1st layer detects half-spaces

– 2nd layer detects polyhedra

– 3rd layer detects a class, which is  any union of polyhedra

polyhedron classhalf-space



• A succession of two linear layers

– 𝑧 = 𝛽1𝑦1 + 𝛽2𝑦2

= 𝛽1 𝛼1𝑥1 + 𝛼2𝑥2 + 𝛽2 𝛼3𝑥1 + 𝛼4𝑥2

– Simplify it to one linear layer

Nonlinearity

𝑥1

𝑥2

𝛼3

𝛼4

𝑦1

𝑦2

𝛽1

𝛽2

𝑧

𝑥1

𝑥2

𝛾1 = 𝛽1𝛼1 + 𝛽2𝛼3

𝛾2 = 𝛽1𝛼2 + 𝛽2𝛼4

𝑧

𝛼1

𝛼2



• Activation function

Nonlinearity



BACKPROPAGATION 

ALGORITHM



Multilayer Perceptron Design

• Design a multilayer perceptron

– Fix an architecture, and optimize the synaptic weights

– To use the gradient descent scheme, we need a 

continuous activation function

• Logistic function (instead of 𝑠(𝑥))

– 𝑓 𝑥 =
1

1+exp(−𝑎𝑥)



Architecture and Formulation

• 𝐿 layers and 𝑘𝑟 neurons in the 𝑟th layer (𝑟 = 1, … , 𝐿)
– 𝑘0 = 𝑙 nodes in the input layer

– 𝑘𝐿 output neurons

• 𝑁 training pairs, (𝐲 𝑖 , 𝐱 𝑖 ), 𝑖 = 1, … , 𝑁, are available

– 𝐲 𝑖 = 𝑦1 𝑖 , … , 𝑦𝑘𝐿
𝑖

𝑇

– 𝐱 𝑖 = 𝑥1 𝑖 , … , 𝑥𝑘0
𝑖

𝑇

• During training, the actual output ො𝐲(𝑖) is different from 

the desired one 𝐲 𝑖

• Compute the synaptic weights to minimize

𝐽 =
1

𝑁


𝑖=1

𝑁

ℇ(𝑖)

ℇ 𝑖 =
1

2


𝑚=1

𝑘𝐿

𝑒𝑚
2 (𝑖) ≡

1

2


𝑚=1

𝑘𝐿

ො𝑦𝑚 𝑖 − 𝑦𝑚 𝑖
2



Definition of Variables

Weight vector for the

𝑗th neuron in the 𝑟th layer

𝐰𝑗
𝑟 = [𝑤𝑗1

𝑟 , 𝑤𝑗2
𝑟 , … , 𝑤𝑗𝑘𝑟−1

𝑟 ]

𝑣𝑗
𝑟 𝑖 = 

𝑘=1

𝑘𝑟−1

𝑤𝑗𝑘
𝑟 𝑦𝑘

𝑟−1(𝑖)



Gradient Descent

𝐰𝑗
𝑟 new = 𝐰𝑗

𝑟 old + ∆𝐰𝑗
𝑟

∆𝐰𝑗
𝑟 = −𝜂

𝜕𝐽

𝜕𝐰𝑗
𝑟



Example

• Compute loss

– Feedforward into three perceptron layers

– Compute gradient and update its weight

𝐽 =
1

𝑁
σ𝑖=1

𝑁 ℇ(𝑖) =
1

𝑁
σ𝑖=1

𝑁 1

2
ො𝑦(𝑖) − 𝑦(𝑖) 2

𝜕ℇ(𝑖)

𝜕𝑤11
3 =

1

2

𝑤11
3 𝑦1

2−𝑤12
3 𝑦2

2 2

𝜕𝑊11
3 = ො𝑦 − 𝑦 × 𝑦1

2

𝑤11
3 new = 𝑤11

3 old − 𝜂
𝜕𝐽

𝜕𝑤11
3

𝑥1

𝑥2

𝑣1
1

𝑣2
1

𝑤11
1

𝑤12
1

𝑤21
1

𝑤22
1

𝑣1
2

𝑣2
2

𝑤11
2

𝑤12
2

𝑤21
2

𝑤22
2

ො𝑦

𝑓 𝑦1
1

𝑓 𝑦2
1

𝑓 𝑦1
2

𝑓 𝑦2
2

𝑤11
3

𝑤12
3



Example

• Compute loss

– Feedforward into three perceptron layers

– Compute gradient and update its weight

𝐽 =
1

𝑁
σ𝑖=1

𝑁 ℇ(𝑖) =
1

𝑁
σ𝑖=1

𝑁 1

2
ො𝑦(𝑖) − 𝑦(𝑖) 2

𝜕ℇ(𝑖)

𝜕𝑤11
2 =

1

2

𝑤11
3 𝑓 𝑤11

2 𝑦1
1+𝑤12

2 𝑦2
1 −𝑤12

3 𝑦2
2

2

𝜕𝑊12
2 = ො𝑦 − 𝑦 × 𝑤11

3 ×
𝜕𝑓 𝑤11

2 𝑦1
1+𝑤12

2 𝑦2
1

𝜕𝑤12
2

𝑤12
2 new = 𝑤12

2 old − 𝜂
𝜕𝐽

𝜕𝑤12
2

𝑥1

𝑥2

𝑣1
1

𝑣2
1

𝑤11
1

𝑤12
1

𝑤21
1

𝑤22
1

𝑣1
2

𝑣2
2

𝑤11
2

𝑤12
2

𝑤21
2

𝑤22
2

ො𝑦

𝑓 𝑦1
1

𝑓 𝑦2
1

𝑓 𝑦1
2

𝑓 𝑦2
2

𝑤11
3

𝑤12
3



Example

• Python code



Update weights

• How to update the weights effectively

𝑤1 𝑤2

𝐽𝑤1,𝑤2

Contour of a loss function



Update weights

• How to update the weights effectively

– Direction

– Step size (learning rate)

Steepest 
descent

𝑤2

𝐽𝑤1,𝑤2

Step size

Direction of 
the steepest descent



Gradient Descent

• Limitations of the gradient descent

– Compute the gradient with an average of all training pairs

• 𝐽 =
1

𝑁
σ𝑖=1

𝑁 ℇ(𝑖)

• 𝐰𝑗
𝑟 new = 𝐰𝑗

𝑟 old − 𝜂
𝜕𝐽

𝜕𝐰𝑗
𝑟

– Take a long time when # of training pairs is large

– Local minima & saddle point

[1] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, “Visualizing the loss landscape of neural Nets,” in NIPS 2018.

Contours of a loss function for CIFAR-10 [1]

Saddle point

Global minima

Local minima



Stochastic gradient descent

• Use randomness

– Compute the gradient with an average of randomly sampled pairs

• 𝐽𝑋𝑘
=

1

𝑛
σ𝑖=1

𝑛 ℇ(𝑋𝑘 𝑖 )

• 𝐰𝑗
𝑟 new = 𝐰𝑗

𝑟 old − 𝜂
𝜕𝐽𝑋𝑘

𝜕𝐰𝑗
𝑟

• Repeat the above process until convergence

–
1

𝑁
σ𝑖=1

𝑁 ℇ(𝑖) ≈
1

𝑚
σ𝑘=1

𝑚 𝐽𝑋𝑘

– Speed up learning

– May overcome local minima & saddle point

• Direction slightly different to the gradient from all pairs



Momentum

• Introduce velocity variables

– Compute the gradient with an average of randomly sampled pairs

• 𝐽𝑋𝑘
=

1

𝑛
σ𝑖=1

𝑛 ℇ(𝑋𝑘 𝑖 )

• 𝐯𝑗
𝑟 new = 𝜇𝐯𝑗

𝑟 old − 𝜂
𝜕𝐽𝑋𝑘

𝜕𝐰𝑗
𝑟

• 𝐰𝑗
𝑟 new = 𝐰𝑗

𝑟 old + 𝐯𝑗
𝑟 new

• Repeat the above process until convergence

Without momentum With momentum



Momentum

• Introduce velocity variables

– Effect over the iterations when 𝜇 = 0.9

• 𝐯1 = −𝒈1

• 𝐯2 = −0.9𝒈1 − 𝒈2

• 𝐯3 = −0.9 0.9𝒈1 − 𝒈2 − 𝒈3 = −0.81𝒈1 − 0.9𝒈2 − 𝒈3

Without momentum With momentum



Root Mean Square Propagation

• Adaptive step size (learning rate) 𝜂

– Chose a different step size 𝜂 for each weight

• Increase 𝜂 when the accumulated magnitude of its gradients is small

• Decrease 𝜂 when the accumulated magnitude of its gradient is large

– Compute the gradient with an average of randomly sampled pairs

• 𝐽𝑋𝑘
=

1

𝑛
σ𝑖=1

𝑛 ℇ(𝑋𝑘 𝑖 )

• 𝐚𝑗
𝑟 new = 𝛼𝐚𝑗

𝑟 old − 1 − 𝛼
𝜕𝐽𝑋𝑘

𝜕𝐰𝑗
𝑟

2

• 𝐰𝑗
𝑟 new = 𝐰𝑗

𝑟 old −
𝜂

𝐚𝑗
𝑟 new +𝜖

𝜕𝐽𝑋𝑘

𝜕𝐰𝑗
𝑟



Update weights

• Optimizer

– Base : SGD

– Direction : Momentum, NAG

– Step size : Adagrad, RMSProp, AdaDelta

– Both : Adam, etc.

𝑤1 𝑤2

𝐽𝑤1,𝑤2

Contour of a loss function

𝑤1

𝑤2

𝐽𝑤1,𝑤2



CONVOLUTIONAL

NEURAL NETWORKS



Multi-layer perceptron (MLP)

• MLP for classifying the handwritten digit data 

– 784 input nodes for each image of 28 × 28 pixels

MNIST



Multi-layer perceptron (MLP)

• MLP for classifying the handwritten digit data 

– 784 input nodes for each image of 28 × 28 pixels

– Same as training set

– Slightly changes

MLP 80% successful prediction

MLP 46% successful prediction



Convolutional neural networks

• Design a network for translation invariance

– Split into overlapping patches



Convolutional neural networks

• Design a network for translation invariance

– Feedforward each patch into a small MLP

– Repeat for all patches

Input patch

Small 
MLP

Output

𝐟9 = 𝑓91, 𝑓92, … , 𝑓9𝑑
𝑇

Small 
MLP

𝐟1 = 𝑓11, 𝑓12, … , 𝑓1𝑑
𝑇

⋮ Shared 
weights



Convolutional neural networks

• Design a network for translation invariance

– Feedforward each patch into a small MLP

– Repeat for all patches

– Feedforward an image into convolution layer

– Yield the hidden neurons (or feature map)

Input Output
(feature map)

Convolution 
layer

𝐟1 𝐟2 𝐟3

𝐟4 𝐟5 𝐟6

𝐟7 𝐟8 𝐟9



Convolutional neural networks

• Design a network for translation invariance

– Simplify the information in the feature map

– Yield the condensed feature map

– Type of pooling

• Max, average, etc.

Input
(feature map)

Output

𝐟1 𝐟2 𝐟3

𝐟4 𝐟5 𝐟6

𝐟7 𝐟8 𝐟9

Max 
pooling layer

max(𝐟1, 𝐟2, 𝐟4, 𝐟5) max(𝐟2, 𝐟3, 𝐟5, 𝐟6)

max(𝐟4, 𝐟5, 𝐟7, 𝐟8) max(𝐟5, 𝐟6, 𝐟8, 𝐟9)



Convolutional neural networks

• Design a network for translation invariance

– Use the feature map for classification

MLP



Summary of CNN history

• LeNet

– It was developed in 1990’s

– Use for digits

– Outperformed many other existing algorithms



Summary of CNN history

• AlexNet

– It significantly outperformed 

– 2012 ImageNet challenge (ILSVRC) winner

– Similar to LeNet, but deeper, and bigger



Summary of CNN history

• GoogLeNet

– Proposed the inception module

– It reduced the number of parameters

• GoogLeNet (4M, top-5 error rate of 6.67%) 

• AlexNet (60M, top-5 error rate of 15.3%)

– Several follow-up versions were proposed (Inception-v4)



Summary of CNN history

• VGGNet

– Use only 3 × 3 convolutions and 2 × 2 pooling

• Uniform architecture

• Currently the most preferred structure

• Use a baseline feature extractor

– Showed that depth of the network is critical component



Summary of CNN history

• ResNet

– Proposed skip connections

– Train a network with 152 layers successfully

– Top-5 error rate of 3.57% at the ILSVRC 2015

• Human-level performance



Summary of CNN history

• ResNet

– Proposed skip connections

– Train a network with 152 layers successfully

– Top-5 error rate of 3.57% at the ILSVRC 2015

• Human-level performance
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