
NEURAL NETWORKS

Terminology

If 𝐰𝑇𝐱 + 𝑤0 > 0 assign 𝐱 to 𝜔1

If 𝐰𝑇𝐱 + 𝑤0 < 0 assign 𝐱 to 𝜔2

• Perceptron or neuron

• Synaptic weights or synapses

• Activation function: e.g. 𝑓 𝑥 = 𝑠 𝑥 (step function)

Nonlinear Classifiers

We deal with problems that are not linearly

separable

ONE! TWO! THREE!

One-Layer Perceptron

• XOR problem is not linearly separable

One-Layer Perceptron

• AND and OR problems are linearly separable

1-layer perceptron
implementation

Two-Layer Perceptron

• XOR problem: solve it in two successive phases

– 1st phase (or layer) uses two lines

Two-Layer Perceptron

• XOR problem: solve it in two successive phases

– 2nd phase

Two-Layer Perceptron

• XOR problem: solve it in two successive phases
– 2-layer perceptron (or 2-layer feedforward neural network)

• 𝑔1 𝐱 = 𝑥1 + 𝑥2 −
1

2
= 0

• 𝑔2 𝐱 = 𝑥1 + 𝑥2 −
3

2
= 0

• 𝑔 𝐲 = 𝑦1 − 𝑦2 −
1

2
= 0

−𝟏

Two-Layer Perceptron

• Terminology

– 2-layer perceptron (or 2-layer feedforward neural network)

−𝟏

hidden
layer

output
layer

input
layer

(non-processing)

Two-Layer Perceptron

• Classification capabilities of two-layer perceptron

– 1st layer maps input to vertices of the unit hypercube

𝐻𝑝 = 𝑦1, … , 𝑦𝑝
𝑇

∈ ℝ𝑝: 𝑦𝑖 ∈ 0, 1 for 1 ≤ 𝑖 ≤ 𝑝

– An output of 1st layer corresponds to a polyhedron

Two-Layer Perceptron

• Classification capabilities of two-layer perceptron

– 2nd layer detects a union of selected polyhedron

Two-Layer Perceptron

• Classification capabilities of two-layer perceptron

Two-layer perceptron can detect a class, which consists

of a union of polyhedral regions, but not any union of

such regions

Three-Layer Perceptron

• Classification capabilities of three-layer perceptron

Three-layer perceptron can detect a class, which consists

of any union of polyhedral regions

Three-Layer Perceptron

• Classification capabilities of three-layer perceptron

– In 2nd layer, for each neuron, the synaptic weights are chosen so

that the realized hyperplane leaves only one of the 𝐻𝑝 vertices

on one side and all the rest on the other

– 3rd layer implements OR gate

2nd layer 3rd layer1st layer

Three-Layer Perceptron

• Classification capabilities of three-layer perceptron

– 1st layer detects half-spaces

– 2nd layer detects polyhedra

– 3rd layer detects a class, which is any union of polyhedra

polyhedron classhalf-space

• A succession of two linear layers

– 𝑧 = 𝛽1𝑦1 + 𝛽2𝑦2

= 𝛽1 𝛼1𝑥1 + 𝛼2𝑥2 + 𝛽2 𝛼3𝑥1 + 𝛼4𝑥2

– Simplify it to one linear layer

Nonlinearity

𝑥1

𝑥2

𝛼3

𝛼4

𝑦1

𝑦2

𝛽1

𝛽2

𝑧

𝑥1

𝑥2

𝛾1 = 𝛽1𝛼1 + 𝛽2𝛼3

𝛾2 = 𝛽1𝛼2 + 𝛽2𝛼4

𝑧

𝛼1

𝛼2

• Activation function

Nonlinearity

BACKPROPAGATION

ALGORITHM

Multilayer Perceptron Design

• Design a multilayer perceptron

– Fix an architecture, and optimize the synaptic weights

– To use the gradient descent scheme, we need a

continuous activation function

• Logistic function (instead of 𝑠(𝑥))

– 𝑓 𝑥 =
1

1+exp(−𝑎𝑥)

Architecture and Formulation

• 𝐿 layers and 𝑘𝑟 neurons in the 𝑟th layer (𝑟 = 1, … , 𝐿)
– 𝑘0 = 𝑙 nodes in the input layer

– 𝑘𝐿 output neurons

• 𝑁 training pairs, (𝐲 𝑖 , 𝐱 𝑖), 𝑖 = 1, … , 𝑁, are available

– 𝐲 𝑖 = 𝑦1 𝑖 , … , 𝑦𝑘𝐿
𝑖

𝑇

– 𝐱 𝑖 = 𝑥1 𝑖 , … , 𝑥𝑘0
𝑖

𝑇

• During training, the actual output ො𝐲(𝑖) is different from

the desired one 𝐲 𝑖

• Compute the synaptic weights to minimize

𝐽 =
1

𝑁

𝑖=1

𝑁

ℇ(𝑖)

ℇ 𝑖 =
1

2

𝑚=1

𝑘𝐿

𝑒𝑚
2 (𝑖) ≡

1

2

𝑚=1

𝑘𝐿

ො𝑦𝑚 𝑖 − 𝑦𝑚 𝑖
2

Definition of Variables

Weight vector for the

𝑗th neuron in the 𝑟th layer

𝐰𝑗
𝑟 = [𝑤𝑗1

𝑟 , 𝑤𝑗2
𝑟 , … , 𝑤𝑗𝑘𝑟−1

𝑟]

𝑣𝑗
𝑟 𝑖 =

𝑘=1

𝑘𝑟−1

𝑤𝑗𝑘
𝑟 𝑦𝑘

𝑟−1(𝑖)

Gradient Descent

𝐰𝑗
𝑟 new = 𝐰𝑗

𝑟 old + ∆𝐰𝑗
𝑟

∆𝐰𝑗
𝑟 = −𝜂

𝜕𝐽

𝜕𝐰𝑗
𝑟

Example

• Compute loss

– Feedforward into three perceptron layers

– Compute gradient and update its weight

𝐽 =
1

𝑁
σ𝑖=1

𝑁 ℇ(𝑖) =
1

𝑁
σ𝑖=1

𝑁 1

2
ො𝑦(𝑖) − 𝑦(𝑖) 2

𝜕ℇ(𝑖)

𝜕𝑤11
3 =

1

2

𝑤11
3 𝑦1

2−𝑤12
3 𝑦2

2 2

𝜕𝑊11
3 = ො𝑦 − 𝑦 × 𝑦1

2

𝑤11
3 new = 𝑤11

3 old − 𝜂
𝜕𝐽

𝜕𝑤11
3

𝑥1

𝑥2

𝑣1
1

𝑣2
1

𝑤11
1

𝑤12
1

𝑤21
1

𝑤22
1

𝑣1
2

𝑣2
2

𝑤11
2

𝑤12
2

𝑤21
2

𝑤22
2

ො𝑦

𝑓 𝑦1
1

𝑓 𝑦2
1

𝑓 𝑦1
2

𝑓 𝑦2
2

𝑤11
3

𝑤12
3

Example

• Compute loss

– Feedforward into three perceptron layers

– Compute gradient and update its weight

𝐽 =
1

𝑁
σ𝑖=1

𝑁 ℇ(𝑖) =
1

𝑁
σ𝑖=1

𝑁 1

2
ො𝑦(𝑖) − 𝑦(𝑖) 2

𝜕ℇ(𝑖)

𝜕𝑤11
2 =

1

2

𝑤11
3 𝑓 𝑤11

2 𝑦1
1+𝑤12

2 𝑦2
1 −𝑤12

3 𝑦2
2

2

𝜕𝑊12
2 = ො𝑦 − 𝑦 × 𝑤11

3 ×
𝜕𝑓 𝑤11

2 𝑦1
1+𝑤12

2 𝑦2
1

𝜕𝑤12
2

𝑤12
2 new = 𝑤12

2 old − 𝜂
𝜕𝐽

𝜕𝑤12
2

𝑥1

𝑥2

𝑣1
1

𝑣2
1

𝑤11
1

𝑤12
1

𝑤21
1

𝑤22
1

𝑣1
2

𝑣2
2

𝑤11
2

𝑤12
2

𝑤21
2

𝑤22
2

ො𝑦

𝑓 𝑦1
1

𝑓 𝑦2
1

𝑓 𝑦1
2

𝑓 𝑦2
2

𝑤11
3

𝑤12
3

Example

• Python code

Update weights

• How to update the weights effectively

𝑤1 𝑤2

𝐽𝑤1,𝑤2

Contour of a loss function

Update weights

• How to update the weights effectively

– Direction

– Step size (learning rate)

Steepest
descent

𝑤2

𝐽𝑤1,𝑤2

Step size

Direction of
the steepest descent

Gradient Descent

• Limitations of the gradient descent

– Compute the gradient with an average of all training pairs

• 𝐽 =
1

𝑁
σ𝑖=1

𝑁 ℇ(𝑖)

• 𝐰𝑗
𝑟 new = 𝐰𝑗

𝑟 old − 𝜂
𝜕𝐽

𝜕𝐰𝑗
𝑟

– Take a long time when # of training pairs is large

– Local minima & saddle point

[1] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, “Visualizing the loss landscape of neural Nets,” in NIPS 2018.

Contours of a loss function for CIFAR-10 [1]

Saddle point

Global minima

Local minima

Stochastic gradient descent

• Use randomness

– Compute the gradient with an average of randomly sampled pairs

• 𝐽𝑋𝑘
=

1

𝑛
σ𝑖=1

𝑛 ℇ(𝑋𝑘 𝑖)

• 𝐰𝑗
𝑟 new = 𝐰𝑗

𝑟 old − 𝜂
𝜕𝐽𝑋𝑘

𝜕𝐰𝑗
𝑟

• Repeat the above process until convergence

–
1

𝑁
σ𝑖=1

𝑁 ℇ(𝑖) ≈
1

𝑚
σ𝑘=1

𝑚 𝐽𝑋𝑘

– Speed up learning

– May overcome local minima & saddle point

• Direction slightly different to the gradient from all pairs

Momentum

• Introduce velocity variables

– Compute the gradient with an average of randomly sampled pairs

• 𝐽𝑋𝑘
=

1

𝑛
σ𝑖=1

𝑛 ℇ(𝑋𝑘 𝑖)

• 𝐯𝑗
𝑟 new = 𝜇𝐯𝑗

𝑟 old − 𝜂
𝜕𝐽𝑋𝑘

𝜕𝐰𝑗
𝑟

• 𝐰𝑗
𝑟 new = 𝐰𝑗

𝑟 old + 𝐯𝑗
𝑟 new

• Repeat the above process until convergence

Without momentum With momentum

Momentum

• Introduce velocity variables

– Effect over the iterations when 𝜇 = 0.9

• 𝐯1 = −𝒈1

• 𝐯2 = −0.9𝒈1 − 𝒈2

• 𝐯3 = −0.9 0.9𝒈1 − 𝒈2 − 𝒈3 = −0.81𝒈1 − 0.9𝒈2 − 𝒈3

Without momentum With momentum

Root Mean Square Propagation

• Adaptive step size (learning rate) 𝜂

– Chose a different step size 𝜂 for each weight

• Increase 𝜂 when the accumulated magnitude of its gradients is small

• Decrease 𝜂 when the accumulated magnitude of its gradient is large

– Compute the gradient with an average of randomly sampled pairs

• 𝐽𝑋𝑘
=

1

𝑛
σ𝑖=1

𝑛 ℇ(𝑋𝑘 𝑖)

• 𝐚𝑗
𝑟 new = 𝛼𝐚𝑗

𝑟 old − 1 − 𝛼
𝜕𝐽𝑋𝑘

𝜕𝐰𝑗
𝑟

2

• 𝐰𝑗
𝑟 new = 𝐰𝑗

𝑟 old −
𝜂

𝐚𝑗
𝑟 new +𝜖

𝜕𝐽𝑋𝑘

𝜕𝐰𝑗
𝑟

Update weights

• Optimizer

– Base : SGD

– Direction : Momentum, NAG

– Step size : Adagrad, RMSProp, AdaDelta

– Both : Adam, etc.

𝑤1 𝑤2

𝐽𝑤1,𝑤2

Contour of a loss function

𝑤1

𝑤2

𝐽𝑤1,𝑤2

CONVOLUTIONAL

NEURAL NETWORKS

Multi-layer perceptron (MLP)

• MLP for classifying the handwritten digit data

– 784 input nodes for each image of 28 × 28 pixels

MNIST

Multi-layer perceptron (MLP)

• MLP for classifying the handwritten digit data

– 784 input nodes for each image of 28 × 28 pixels

– Same as training set

– Slightly changes

MLP 80% successful prediction

MLP 46% successful prediction

Convolutional neural networks

• Design a network for translation invariance

– Split into overlapping patches

Convolutional neural networks

• Design a network for translation invariance

– Feedforward each patch into a small MLP

– Repeat for all patches

Input patch

Small
MLP

Output

𝐟9 = 𝑓91, 𝑓92, … , 𝑓9𝑑
𝑇

Small
MLP

𝐟1 = 𝑓11, 𝑓12, … , 𝑓1𝑑
𝑇

⋮ Shared
weights

Convolutional neural networks

• Design a network for translation invariance

– Feedforward each patch into a small MLP

– Repeat for all patches

– Feedforward an image into convolution layer

– Yield the hidden neurons (or feature map)

Input Output
(feature map)

Convolution
layer

𝐟1 𝐟2 𝐟3

𝐟4 𝐟5 𝐟6

𝐟7 𝐟8 𝐟9

Convolutional neural networks

• Design a network for translation invariance

– Simplify the information in the feature map

– Yield the condensed feature map

– Type of pooling

• Max, average, etc.

Input
(feature map)

Output

𝐟1 𝐟2 𝐟3

𝐟4 𝐟5 𝐟6

𝐟7 𝐟8 𝐟9

Max
pooling layer

max(𝐟1, 𝐟2, 𝐟4, 𝐟5) max(𝐟2, 𝐟3, 𝐟5, 𝐟6)

max(𝐟4, 𝐟5, 𝐟7, 𝐟8) max(𝐟5, 𝐟6, 𝐟8, 𝐟9)

Convolutional neural networks

• Design a network for translation invariance

– Use the feature map for classification

MLP

Summary of CNN history

• LeNet

– It was developed in 1990’s

– Use for digits

– Outperformed many other existing algorithms

Summary of CNN history

• AlexNet

– It significantly outperformed

– 2012 ImageNet challenge (ILSVRC) winner

– Similar to LeNet, but deeper, and bigger

Summary of CNN history

• GoogLeNet

– Proposed the inception module

– It reduced the number of parameters

• GoogLeNet (4M, top-5 error rate of 6.67%)

• AlexNet (60M, top-5 error rate of 15.3%)

– Several follow-up versions were proposed (Inception-v4)

Summary of CNN history

• VGGNet

– Use only 3 × 3 convolutions and 2 × 2 pooling

• Uniform architecture

• Currently the most preferred structure

• Use a baseline feature extractor

– Showed that depth of the network is critical component

Summary of CNN history

• ResNet

– Proposed skip connections

– Train a network with 152 layers successfully

– Top-5 error rate of 3.57% at the ILSVRC 2015

• Human-level performance

Summary of CNN history

• ResNet

– Proposed skip connections

– Train a network with 152 layers successfully

– Top-5 error rate of 3.57% at the ILSVRC 2015

• Human-level performance

	슬라이드 1: Neural networks
	슬라이드 2: Terminology
	슬라이드 3: Nonlinear Classifiers
	슬라이드 4: One! Two! Three!
	슬라이드 5: One-Layer Perceptron
	슬라이드 6: One-Layer Perceptron
	슬라이드 7: Two-Layer Perceptron
	슬라이드 8: Two-Layer Perceptron
	슬라이드 9: Two-Layer Perceptron
	슬라이드 10: Two-Layer Perceptron
	슬라이드 11: Two-Layer Perceptron
	슬라이드 12: Two-Layer Perceptron
	슬라이드 13: Two-Layer Perceptron
	슬라이드 14: Three-Layer Perceptron
	슬라이드 15: Three-Layer Perceptron
	슬라이드 16: Three-Layer Perceptron
	슬라이드 17: Nonlinearity
	슬라이드 18: Nonlinearity
	슬라이드 19: Backpropagation algorithm
	슬라이드 20: Multilayer Perceptron Design
	슬라이드 21: Architecture and Formulation
	슬라이드 22: Definition of Variables
	슬라이드 23: Gradient Descent
	슬라이드 24: Example
	슬라이드 25: Example
	슬라이드 26: Example
	슬라이드 27: Update weights
	슬라이드 28: Update weights
	슬라이드 29: Gradient Descent
	슬라이드 30: Stochastic gradient descent
	슬라이드 31: Momentum
	슬라이드 32: Momentum
	슬라이드 33: Root Mean Square Propagation
	슬라이드 34: Update weights
	슬라이드 35: Convolutional Neural networks
	슬라이드 36: Multi-layer perceptron (MLP)
	슬라이드 37: Multi-layer perceptron (MLP)
	슬라이드 38: Convolutional neural networks
	슬라이드 39: Convolutional neural networks
	슬라이드 40: Convolutional neural networks
	슬라이드 41: Convolutional neural networks
	슬라이드 42: Convolutional neural networks
	슬라이드 43: Summary of CNN history
	슬라이드 44: Summary of CNN history
	슬라이드 45: Summary of CNN history
	슬라이드 46: Summary of CNN history
	슬라이드 47: Summary of CNN history
	슬라이드 48: Summary of CNN history

